数值分析与算法(第2版)/清华大学计算机系列教材

数值分析与算法(第2版)/清华大学计算机系列教材 pdf epub mobi txt 电子书 下载 2025

喻文健 著
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 清华大学出版社
ISBN:9787302409823
版次:2
商品编码:11772084
品牌:清华大学
包装:平装
丛书名: 清华大学计算机系列教材
开本:16开
出版时间:2015-08-01
用纸:胶版纸

具体描述

内容简介

  《数值分析与算法(第2版)/清华大学计算机系列教材》是针对“数值分析”、“计算方法”、“数值分析与算法”等课程编写的教材,主要面向理工科大学信息科学与技术各专业,以及信息与计算科学专业的本科生。本书内容包括数值计算基础、非线性方程的数值解法、线性方程组的直接解法与迭代解法、矩阵特征值与特征向量的计算、数值逼近与插值、数值积分方法、常微分方程初值问题的解法,以及数值算法与应用的知识。本书涵盖数值分析、矩阵计算领域zui基本、zui常用的一些知识与方法,而且在算法及应用方面增加了一些较新的内容。在叙述上既注重理论的严谨性,又强调方法的应用背景、算法设计,以及不同方法的对比。为了增加实用性与可扩展性,每章配备了应用实例、算法背后的历史、评述等子栏目,书末附有算法、术语索引。在附录中还包括MATLAB软件的简介,便于读者快速掌握并进行编程实验。
  本书适合作为高年级本科生或研究生的教材,也可供从事科学与工程计算的科研人员参考。

作者简介

  喻文健,清华大学计算机系副教授。1999年、2003年先后毕业于清华大学计算机系,获得工学学士与博士学位,随后留校任教。2005年9月至2008年1月,多次赴美国加州大学圣迭戈分校(UC San Diego)计算机系担任访问学者。目前为IEEE高级会员、中国计算机学会“计算机辅助设计与图形学”专业委员会委员,担任多个国际、国内学术期刊的编委及论文评审专家。主要从事数值算法与软件、集成电路与系统的计算机辅助设计等方面的教学与科研工作,发表SCI检索的国际期刊论文30多篇。2014年由Springer公司出版专著《Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits》,此外出版译著多本。获2005年“全国优秀博士论文”提名,2010年清华大学科研成果推广应用效益奖,2014年获批国家自然科学基金优秀青年基金项目。

目录

第1章数值计算导论1

1.1概述1

1.1.1数值计算与数值算法1

1.1.2数值计算的问题与策略2

1.1.3数值计算软件4

1.2误差分析基础6

1.2.1数值计算的近似6

1.2.2误差及其分类7

1.2.3问题的敏感性与数据传递误差估算11

1.2.4算法的稳定性13

1.3计算机浮点数系统与舍入误差15

1.3.1计算机浮点数系统15

1.3.2舍入与机器精度18

1.3.3浮点运算的舍入误差19

1.3.4抵消现象21

1.4保证数值计算的准确性22

1.4.1减少舍入误差的几条建议22

1.4.2影响结果准确性的主要因素24

评注25

算法背后的历史: 浮点运算的先驱——威廉·卡亨26

练习题28

上机题29

第2章非线性方程求根30

2.1引言30

2.1.1非线性方程的解30

2.1.2问题的敏感性31

2.2二分法31

2.2.1方法原理31

2.2.2算法稳定性和结果准确度33

2.3不动点迭代法35

2.3.1基本原理35

2.3.2全局收敛的充分条件36

2.3.3局部收敛性38

2.3.4稳定性与收敛阶38

2.4牛顿迭代法40

2.4.1方法原理40

2.4.2重根的情况42

2.4.3判停准则43

2.4.4牛顿法的问题43

2.5割线法与抛物线法44

2.5.1割线法44

2.5.2抛物线法46

2.6实用的方程求根技术46

2.6.1阻尼牛顿法46

2.6.2多项式方程求根47

2.6.3通用求根算法zeroin48

应用实例: 城市水管应埋于地下多深?50

2.7非线性方程组和有关数值软件52

2.7.1非线性方程组52

2.7.2非线性方程求根的相关软件54

评述55

算法背后的历史: 牛顿与牛顿法56

练习题57

上机题58

第3章线性方程组的直接解法59

3.1基本概念与问题的敏感性59

3.1.1线性代数中的有关概念59

3.1.2向量范数与矩阵范数62

3.1.3问题的敏感性与矩阵条件数65

3.2高斯消去法69

3.2.1基本的高斯消去法69

3.2.2高斯�苍嫉毕�去法72

3.3矩阵的LU分解75

3.3.1高斯消去过程的矩阵形式75

3.3.2矩阵的直接LU分解算法79

3.3.3LU分解的用途82

3.4选主元技术与算法稳定性83

3.4.1为什么要选主元83

3.4.2使用部分主元技术的LU分解85

3.4.3其他选主元技术89

3.4.4算法的稳定性90

3.5对称正定矩阵与带状矩阵的解法91

3.5.1对称正定矩阵的Cholesky分解91

3.5.2带状线性方程组的解法95

应用实例: 稳态电路的求解97

3.6有关稀疏线性方程组的实用技术99

3.6.1稀疏矩阵基本概念99

3.6.2MATLAB中的相关功能102

3.7有关数值软件104

评述106

算法背后的历史: 威尔金森与数值分析107

练习题108

上机题110

第4章线性方程组的迭代解法112

4.1迭代解法的基本理论112

4.1.1基本概念112

4.1.21阶定常迭代法的收敛性113

4.1.3收敛阶与收敛速度116

4.2经典迭代法118

4.2.1雅可比迭代法118

4.2.2高斯�踩�德尔迭代法119

4.2.3逐次超松弛迭代法121

4.2.4三种迭代法的收敛条件123

应用实例: 桁架结构的应力分析126

4.3共轭梯度法简介128

4.3.1最速下降法128

4.3.2共轭梯度法131

4.4各种方法的比较135

4.4.1迭代法之间的比较135

4.4.2直接法与迭代法的对比138

4.5有关数值软件139

评述140

算法背后的历史: 雅可比142

练习题143

上机题144

第5章矩阵特征值计算146

5.1基本概念与特征值分布146

5.1.1基本概念与性质146

5.1.2特征值分布范围的估计150

5.2幂法与反幂法152

5.2.1幂法152

5.2.2加速收敛的方法156

5.2.3反幂法158

应用实例: Google的PageRank算法160

5.3矩阵的正交三角化162

5.3.1Householder变换163

5.3.2Givens旋转变换165

5.3.3矩阵的QR分解166

5.4所有特征值的计算与QR算法170

5.4.1收缩技术170

5.4.2基本QR算法171

5.4.3实用QR算法的有关技术173

5.5有关数值软件177

评述178

算法背后的历史: A.Householder与矩阵分解179

练习题180

上机题183

第6章函数逼近与函数插值185

6.1函数逼近的基本概念185

6.1.1函数空间185

6.1.2函数逼近的不同类型188

6.2连续函数的最佳平方逼近190

6.2.1一般的法方程方法190

6.2.2用正交函数族进行逼近194

6.3曲线拟合的最小二乘法197

6.3.1问题的矩阵形式与法方程法198

6.3.2用正交化方法求解最小二乘问题202

应用实例: 原子弹爆炸的能量估计206

6.4函数插值与拉格朗日插值法207

6.4.1插值的基本概念207

6.4.2拉格朗日插值法208

6.4.3多项式插值的误差估计211

6.5牛顿插值法213

6.5.1基本思想213

6.5.2差商与牛顿插值公式214

6.6分段多项式插值219

6.6.1高次多项式插值的病态性质219

6.6.2分段线性插值220

6.6.3分段埃尔米特插值221

6.6.4保形分段插值224

6.7样条插值函数226

6.7.1三次样条插值226

6.7.2三次样条插值函数的构造227

6.7.3B�惭�条函数229

评述232

算法背后的历史: 拉格朗日与插值法233

练习题234

上机题236

第7章数值积分与数值微分238

7.1数值积分概论238

7.1.1基本思想238

7.1.2求积公式的积分余项与代数精度240

7.1.3求积公式的收敛性与稳定性241

7.2牛顿�部绿厮构�式242

7.2.1柯特斯系数与几个低阶公式242

7.2.2牛顿�部绿厮构�式的代数精度244

7.2.3几个低阶公式的余项245

7.3复合求积公式246

7.3.1复合梯形公式246

7.3.2复合辛普森公式247

7.3.3步长折半的复合求积公式计算249

7.4Romberg积分算法250

7.4.1复合梯形公式的余项展开式250

7.4.2理查森外推法251

7.4.3Romberg算法252

7.5自适应积分算法254

7.5.1自适应积分的原理255

7.5.2一个具体的自适应积分算法255

7.6高斯求积公式258

7.6.1一般理论258

7.6.2高斯�怖杖玫禄�分公式及其他261

应用实例: 探月卫星轨道长度计算263

7.7数值微分264

7.7.1基本的有限差分公式265

7.7.2插值型求导公式266

7.7.3数值微分的外推算法268

评述269

算法背后的历史: “数学王子”高斯271

练习题272

上机题273

第8章常微分方程初值问题的解法275

8.1引言275

8.1.1问题分类与可解性275

8.1.2问题的敏感性276

8.2简单的数值解法与有关概念278

8.2.1欧拉法278

8.2.2数值解法的稳定性与准确度280

8.2.3向后欧拉法与梯形法282

8.3龙格�部馑�方法284

8.3.1基本思想284

8.3.2几种显式R�睰公式285

8.3.3显式R�睰公式的稳定性与收敛性289

8.3.4自动变步长的R�睰方法290

8.4多步法292

8.4.1多步法公式的推导292

8.4.2Adams公式295

8.4.3更多讨论298

8.5常微分方程组与实用技术299

8.5.11阶常微分方程组299

8.5.2MATLAB中的实用ODE求解器302

应用实例: 洛伦兹吸引子306

评述308

算法背后的历史: “数学家之英雄”欧拉309

练习题310

上机题312

附录A有关数学记号的说明314

附录BMATLAB简介316

附录C部分习题答案336

算法索引339

术语索引341

参考文献349第1章数值计算导论1

1.1概述1

1.1.1数值计算与数值算法1

1.1.2数值计算的问题与策略2

1.1.3数值计算软件4

1.2误差分析基础6

1.2.1数值计算的近似6

1.2.2误差及其分类7

1.2.3问题的敏感性与数据传递误差估算11

1.2.4算法的稳定性14

1.3计算机浮点数系统与舍入误差15

1.3.1计算机浮点数系统16

1.3.2舍入与机器精度18

1.3.3�掣〉阍怂愕纳崛胛蟛�20

1.3.4抵消现象21

1.4保证数值计算的准确性22

1.4.1减少舍入误差的几条建议22

1.4.2影响结果准确性的主要因素25

评注26

算法背后的历史: 浮点运算的先驱——威廉·卡亨27

练习题28

上机题29

第2章非线性方程求根31

2.1引言31

2.1.1非线性方程的解31

2.1.2问题的敏感性32

2.2二分法32

2.2.1方法原理32

2.2.2算法稳定性和结果准确度34

2.3不动点迭代法36

2.3.1基本原理36

2.3.2全局收敛的充分条件37

2.3.3局部收敛性38

2.3.4稳定性与收敛阶39

2.4牛顿迭代法41

2.4.1方法原理41

2.4.2重根的情况43

数值分析与算法(第2版)目录2.4.3判停准则44

2.4.4牛顿法的问题44

2.5割线法与抛物线法45

2.5.1割线法45

2.5.2�撑孜锵叻�46

2.6实用的方程求根技术47

2.6.1阻尼牛顿法47

2.6.2�扯嘞钍椒匠糖蟾�48

2.6.3�惩ㄓ们蟾�算法zeroin48

应用实例: 城市水管应埋于地下多深?51

2.7非线性方程组和有关数值软件52

2.7.1�撤窍咝苑匠套�52

2.7.2非线性方程求根的相关软件54

评述55

算法背后的历史: 牛顿与牛顿法56

练习题57

上机题58

第3章线性方程组的直接解法60

3.1基本概念与问题的敏感性60

3.1.1线性代数中的有关概念60

3.1.2向量范数与矩阵范数63

3.1.3问题的敏感性与矩阵条件数66

3.2高斯消去法70

3.2.1基本的高斯消去法70

3.2.2�掣咚躬踩舻毕�去法72

3.3矩阵的LU分解76

3.3.1高斯消去过程的矩阵形式76

3.3.2矩阵的直接LU分解算法80

3.3.3LU分解的用途83

3.4选主元技术与算法稳定性84

3.4.1为什么要选主元84

3.4.2使用部分主元技术的LU分解86

3.4.3其他选主元技术90

3.4.4算法的稳定性91

3.5对称正定矩阵与带状矩阵的解法92

3.5.1对称正定矩阵的Cholesky分解92

3.5.2带状线性方程组的解法96

应用实例: 稳态电路的求解98

3.6�秤泄叵∈柘咝苑匠套榈氖涤眉际�99

3.6.1稀疏矩阵基本概念100

3.6.2MATLAB中的相关功能102

3.7有关数值软件105

评述107

算法背后的历史: 威尔金森与数值分析108

练习题109

上机题111

第4章线性方程组的迭代解法113

4.1迭代解法的基本理论113

4.1.1基本概念113

4.1.21阶定常迭代法的收敛性114

4.1.3收敛阶与收敛速度117

4.2经典迭代法119

4.2.1雅可比迭代法119

4.2.2高斯�踩�德尔迭代法120

4.2.3逐次超松弛迭代法122

4.2.4三种迭代法的收敛条件124

应用实例: 桁架结构的应力分析127

4.3共轭梯度法129

4.3.1最速下降法129

4.3.2�彻查钐荻确�132

4.4各种方法的比较135

4.4.1迭代法之间的比较136

4.4.2直接法与迭代法的对比139

4.5有关数值软件140

评述141

算法背后的历史: 雅可比142

练习题143

上机题145

第5章矩阵特征值计算147

5.1基本概念与特征值分布147

5.1.1基本概念与性质147

5.1.2特征值分布范围的估计151

5.2幂法与反幂法153

5.2.1幂法153

5.2.2加速收敛的方法157

5.2.3反幂法159

应用实例: Google的PageRank算法161

5.3矩阵的正交三角化163

5.3.1Householder变换164

5.3.2Givens旋转变换166

5.3.3矩阵的QR分解167

5.4所有特征值的计算与QR算法171

5.4.1收缩技术171

5.4.2基本QR算法172

5.4.3�呈涤肣R算法的有关技术174

5.5有关数值软件178

评述179

算法背后的历史: A.Householder与矩阵分解180

练习题181

上机题184

第6章函数逼近与函数插值186

6.1函数逼近的基本概念186

6.1.1函数空间186

6.1.2函数逼近的不同类型189

6.2连续函数的最佳平方逼近191

6.2.1一般的法方程方法191

6.2.2用正交函数族进行逼近195

6.3曲线拟合的最小二乘法198

6.3.1问题的矩阵形式与法方程法199

6.3.2用正交化方法求解最小二乘问题203

应用实例: 原子弹爆炸的能量估计206

6.4函数插值与拉格朗日插值法208

6.4.1插值的基本概念208

6.4.2拉格朗日插值法209

6.4.3多项式插值的误差估计212

6.5牛顿插值法214

6.5.1基本思想214

6.5.2差商与牛顿插值公式215

6.6分段多项式插值220

6.6.1高次多项式插值的病态性质220

6.6.2分段线性插值221

6.6.3分段埃尔米特插值222

6.6.4保形分段插值225

6.7样条插值函数226

6.7.1三次样条插值227

6.7.2三次样条插值函数的构造228

6.7.3�矪�惭�条函数231

评述232

算法背后的历史: 拉格朗日与插值法234

练习题235

上机题237

第7章数值积分与数值微分239

7.1数值积分概论239

7.1.1基本思想239

7.1.2求积公式的积分余项与代数精度241

7.1.3求积公式的收敛性与稳定性242

7.2牛顿�部绿厮构�式243

7.2.1柯特斯系数与几个低阶公式243

7.2.2牛顿�部绿厮构�式的代数精度245

7.2.3几个低阶公式的余项246

7.3复合求积公式247

7.3.1复合梯形公式247

7.3.2复合辛普森公式248

7.3.3步长折半的复合求积公式计算250

7.4Remberg积分算法251

7.4.1复合梯形公式的余项展开式251

7.4.2理查森外推法252

7.4.3Romberg算法253

7.5自适应积分算法255

7.5.1自适应积分的原理256

7.5.2�骋桓鼍咛宓淖允视�积分算法256

7.6高斯求积公式259

7.6.1一般理论259

7.6.2高斯�怖杖玫禄�分公式及其他262

应用实例: 探月卫星轨道长度计算264

7.7数值微分265

7.7.1基本的有限差分公式266

7.7.2插值型求导公式267

7.7.3数值微分的外推算法269

评述270

算法背后的历史: “数学王子”高斯272

练习题273

上机题274

第8章常微分方程初值问题的解法276

8.1引言276

8.1.1问题分类与可解性276

8.1.2问题的敏感性277

8.2简单的数值解法与有关概念279

8.2.1欧拉法279

8.2.2数值解法的稳定性与准确度281

8.2.3向后欧拉法与梯形法283

8.3龙格�部馑�方法285

8.3.1基本思想285

8.3.2几种显式R�睰公式286

8.3.3显式R�睰公式的稳定性与收敛性290

8.3.4�匙远�变步长的R�睰方法291

8.4多步法293

8.4.1多步法公式的推导293

8.4.2Adams公式296

8.4.3更多讨论299

8.5�吵N⒎址匠套橛胧涤眉际�300

8.5.11阶常微分方程组300

8.5.2MATLAB中的实用ODE求解器303

应用实例: 洛伦兹吸引子306

评述308

算法背后的历史: “数学家之英雄”欧拉309

练习题311

上机题313

附录A有关数学记号的说明314

附录BMATLAB简介316

附录C部分习题答案336

索引339

术语索引341

参考文献346


前言/序言

  “数值分析”或“计算方法”是理工科大学各专业普遍开设的一门课程,其内容主要包括有关数值计算(numerical computing)的理论与方法。数值计算是计算数学、计算机科学与其他工程学科相结合的产物,随着计算技术的发展与普及,它正变得越来越重要。

  本书的主要内容与一般的“数值分析”教材基本一致,但还具有如下特点。

  (1) 对数学理论的介绍简明扼要。尽量用形象的方式解释数学中的一些概念与理论,通过定理总结重要的结论。在不失严谨性的前提下,省略部分定理的证明,取而代之的是进行直观的解释、验证,并说明其意义与用途。

  (2) 强调算法的实际应用与分析比较。对大多数算法,采用程序伪码的形式加以描述,同时分析其计算复杂度。说明算法应用中的细节问题,对几个较新的算法还给出了MATLAB源程序。通过“应用实例”和相关MATLAB命令,更详细地介绍算法的应用。

  (3) 具有较强的可读性与实用性。尽量用图、表等形象的方式对概念、现象进行解释。每章编写了“算法背后的历史”子栏目,增强阅读的趣味性。书末附有算法、术语索引,便于查阅。为了便于读者动手实践,对MATLAB软件的相关功能做了介绍。

  (4) 在内容编排上有利于教学。依据教学规律安排各章的顺序;在每章的“评述”部分列出主要知识点,除练习题外还提供了上机实验题,附录中给出了部分习题的答案。

  学习数值分析与算法,应重视通过计算机编程加深理解相关理论与算法。本书提倡使用MATLAB软件来进行编程实验,基于以下理由:①MATLAB编程语言易于学习、代码简洁,可节省编程实验时间。②MATLAB是功能强大的科学计算集成环境,便于程序调试和形象直观地展示程序运行结果。③MATLAB具有丰富、先进的数值计算能力,已被广泛用于科学与工程实践中,掌握MATLAB中使用的技术可作为课程学习的扩展与提高。

  本书第1版于2012年出版后,即作为“数值分析”课的教材投入使用,收到了较满意的效果。但通过教学实践也发现了书中的一些问题与纰漏之处,有必要进行更正与修订。本书第2版对第1版中幂法使用条件、对角占优矩阵LU分解稳定性等处进行了更正,修改了第1章部分定理的证明,更新了第2章和第7章,以及附录B有关MATLAB软件的内容,共计修订文字、图、表两百余处。在排版方面也做了一些改进,力求呈现出更高的品质。

  本书体现了作者过去十年的教学工作积累,参考、借鉴了十几种较新的国内外优秀教材,力争在理论与实践相结合、反映学科发展前沿,以及适应时代发展对学生培养的新要求等方面取得好的效果。本书内容由误差分析、非线性方程求根、数值线性代数、函数插值、数值积分、常微分方程数值解法等部分组成,包括了数值计算领域中最经典、应用最广泛的一些内容,它们也为学习数学规划、大数据分析、机器学习等较新领域中的一些高级算法提供基础。使用本教材时,可用48学时讲授主要的内容,几乎每章也包含一些简介性质或与MATLAB软件有关的内容,供感兴趣的学生选学或课后阅读。

  下图显示了各章主要内容的知识依赖关系。总体上,建议教师按照从第1章到第8章的顺序开展教学,只是第2.7节依赖于线性方程组的有关知识,需在第3章讲完后介绍。

  白如冰、朱臻垚参加了本书第1版部分内容的编写,选修作者讲授的“数值分析”课的广大同学指出了第1版中的很多错误,提供了积极反馈,在此致以诚挚的谢意!此外,还要感谢清华大学王泽毅、殷人昆、边计年、蔡懿慈等教授给予的指导与帮助,以及清华大学出版社的编辑在出版本书过程中付出的辛勤劳动。

  数值分析与算法(第2版)第2版前言据不完全统计,本书已被20多所大学选作教材,使用的专业包括计算机专业、软件工程专业、电子信息专业、自动化专业等,在清华大学使用本教材的也包括物理、经管、工业工程,以及其他一些工科专业的学生。在此,作者对广大读者的支持表示诚挚的感谢!也希望广大读者提出宝贵的意见与建议。

  喻文健2015年7


用户评价

评分

不错不错不错不错

评分

系列图书缺一不可。值得推荐。

评分

很不错的书。。。。。

评分

这本书还可以,我最近课很多!!!

评分

书还行,跟原价买差不多了。封皮有点脏不知道是怎么回事,京东速度第一。

评分

很不错的书。。。。。

评分

数值分析的必备工具书。

评分

数值分析的必备工具书。

评分

是正版的。

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou 等,本站所有链接都为正版商品购买链接。

© 2025 windowsfront.com All Rights Reserved. 静流书站 版权所有