连续时间中的随机优化 pdf epub mobi txt 电子书 下载 2024

图书介绍


连续时间中的随机优化

简体网页||繁体网页
[美] Fwu-Ranq Chang 著



点击这里下载
    


想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-22

类似图书 点击查看全场最低价

出版社: 世界图书出版公司
ISBN:9787510050442
版次:1
商品编码:11181632
包装:平装
开本:24开
出版时间:2013-01-01
页数:326

连续时间中的随机优化 epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

相关图书



连续时间中的随机优化 epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

连续时间中的随机优化 pdf epub mobi txt 电子书 下载



具体描述

内容简介

  "Stochastic optimization in continuous time"(AuthorFwu-Ranq Chang)is a rigorous but user-friendly book on the application of stochastic control theory to economics. A distinctive feature of the book is that math-ematical concepts are introduced in a language and terminology familiar to graduate students of economics.

目录

List of Figures
Preface
1 Probability Theory
1.1 Introduction
1.2 Stochastic Processes
1.2.1 In formation Sets and a -Algebras
1.2.2 The Cantor Set
1.2.3 Borel-Cantelli Lemmas
1.2.4 Distribution Functions and Stochastic Processes
1.3 Conditional Expectation
1.3.1 Conditional Probability
1.3.2 Conditional Expectation
1.3,3 Change of Variables
1.4 Notes and Further Readings
2 Wiener Processes
2.1 introduction
2.2 A Heuristic Approach
2.2.1 From Random Walks to Wiener Process
2.2.2 Some Basic Properties of the Wiener Process
2.3 Markov Processes
2.3.1 Introduction
2.3.2 Transition Probability
2.3.3 Diffusion Processes
2.4 Wiener Processes
2.4.1 How to Generate More Wiener Processes
2.4.2 Differentiability of Sample Functions
2.4.3 Stopping Times
2.4.4 The Zero Set
2.4.5 Bounded Variations and the Irregularity of the
Wiener Process
2.5 Notes and Further Readings
3 Stochastic Calculus
3.1 Introduction
3.2 A Heuristic Approach
3.2.1 ls □ (s X )dWs Riemarm Integrable?
3.2.2 The Choice of□ Matters
3.2.3 In Search of the Class of Functions for a (s, w)
3.3 The Ito Integral
3.3.1 Definition
3.3.2 Martingales
3.4 lto's Lemma: Autonomous Case
3.4.1 Ito's Lemma
3.4.2 Geometric Brownian Motion
3.4.3 Population Dynamics
3.4.4 Additive Shocks or Multiplicative Shocks
3.4.5 Multiple Sources of Uncertainty
3.4.6 Multivariate lto's Lemma
3.5 Ito's Lemma for Time-Dependent Functions
3.5.1 Euler's Homogeneous Differential Equation and the Heat Equation
3.5.2 Black-Scholes Formula
3.5.3 Irreversible Investment
3.5.4 Budget Equation for an Investor
3.5.5 Ito's Lemma: General Form
3.6 Notes and Further Readings
4 Stochastic Dynamic Programming
4.1 Introduction
4.2 Bellman Equation
4.2.1 Infinite-Horizon Problems
4.2.2 Verification Theorem
4.2.3 Finite-Horizon Problems
4.2.4 Existence and Differentiability of the Value Function
4.3 Economic Applications
4.3.1 Consumption and Portfolio Rules
4.3.2 Index Bonds
4.3.3 Exhaustible Resources
4.3.4 Adjustment Costs and (Reversible) Investment
4.3.5 Uncertain Lifetimes and Life Insurance
4.4 Extension: Reeursive Utility
4.4.1 Bellman Equation with Recursive Utility
4.4.2 Effects of Reeursivity: Deterministic Case
4.5 Notes and Further Readings
5 How to Solve it
5.1 Introduction
5.2 HARA Functions
5.2.1 The Meaning of Each Parameter
5.2.2 Closed-Form Representations
5.3 Trial and Error
5.3.1 Linear-Quadratic Models
5.3.2 Linear-HARA models
5.3.3 Linear-Concave Models
5.3,4 Nonlinear-Concave Models
5.4 Symmetry
5.4.1 Linear-Quadratic Model Revisited
5.4.2 Merton's Model Revisited
5.4.3 Fischer's Index Bond Model
5.4.4 Life Insurance
5.5 The Substitution Method
5.6 Martingale Representation Method
5.6.1 Girsanov Transformation
5.6.2 Example: A Portfolio Problem
5.6.3 Which 8 to Choose?
5.6.4 A Transformed Problem
5.7 Inverse Optimum Method
5.7.1 The Inverse Optimal Problem: Certainty Case
5.7.2 The Inverse Optimal Problem: Stochastic Case
5.7.3 Inverse Optimal Problem of Merton's Model
5.8 Notes and Further Readings
6 Boundaries and Absorbing Barriers
6.1 Introduction
6.2 Nonnegativity Constraint
6.2.1 Issues and Problems
6.2.2 Comparison Theorems
6.2.3 Chang and Malliaris's Reflection Method
6.2.4 Inaccessible Boundaries
6.3 Other Constraints
6.3.1 A Portfolio Problem with Borrowing CoosWaints
6.3.2 Viscosity Solutions
6.4 Stopping Rules - Certainty Case
6.4.1 The Baumol-Tobin Model
6.4.2 A Dynamic Model of Money Demand
6.4.3 The Tree-Cutting Problem
6.5 The Expected Discount Factor
6.5.1 Fundamental Equation for Ex[e□]
6.5.2 One Absorbing Barrier
6.5.3 Two Absorbing Barriers
6.6 Optimal Stopping Times
6.6.1 Dynamic and Stochastic Demand for Money
6.6.2 Stochastic Tree-Cutting and Rotation Problems
6.6.3 Investment Timing
6.7 Notes and Further Readings
A Miscellaneous Applications and Exercises
Bibliography
Index

前言/序言



连续时间中的随机优化 电子书 下载 mobi epub pdf txt

连续时间中的随机优化 pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

这本书还好。

评分

买了就是要看下,质量和好,肯定正版

评分

还没看,希望有用,有用就好

评分

还没看,希望有用,有用就好

评分

支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东支持京东

评分

挺好的书 挺好的书挺好的书 挺好的书

评分

挺好的书 挺好的书挺好的书 挺好的书

评分

第一:由于不需要进行波前测量,系统中不需要采用波前传感器,也无需进行波前重构,而是以成像清晰度和接受光能量为性能指标直接作为算法优化的目标函数,降低了系统和算法的复杂性[3]。

评分

由于星地链路之间的主要传输介质是大气,穿过路径较长,大气分子对于激光光束的吸收与散射将引起传播方向上光能的衰减,因此传输信道中的大气湍流是限制通信距离及通信系统性能的瓶颈之一,不仅需要考虑大气对激光的吸收与散射,还必须考虑大气的湍流效应。大气湍流会使光载波在传输过程中随机地改变其光束特性,致使携带信息的光波的强度和相位在空间和时间上都呈现随机起伏,造成闪烁现象,极大地降低了系统的成像质量或光束质量。基于随机并行下降算法的自适应光学技术可以提高激光作用到目标上的聚集程度;降低空间目标在望远镜成像面上的模糊程度,提高目标识别的准确度,实现对目标的精跟踪;提高激光通信系统的载波光束质量,降低系统的噪声水平、提高数据传输速率等,在天文自适应成像领域已得到成功应用。

类似图书 点击查看全场最低价

连续时间中的随机优化 pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


连续时间中的随机优化 bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 windowsfront.com All Rights Reserved. 静流书站 版权所有