发表于2024-11-26
零起点Python机器学习快速入门 pdf epub mobi txt 电子书 下载
不需要任何编程、交易经验,也不需要具备超强的数据分析能力,只要会使用Excel就可以轻松学会本书讲解的知识点。
本书采用独创的黑箱模式,MBA案例教学机制,结合一线实战案例,介绍Sklearn人工智能模块库和常用的机器学习算法。书中配备大量图表说明,没有枯燥的数学公式,普通读者,只要懂Word、Excel,就能够轻松阅读全书,并学习使用书中的知识,分析大数据。本书具有以下特色:独创的黑箱教学模式,全书无任何抽象理论和深奥的数学公式。首次系统化融合Sklearn人工智能软件和Pandas数据分析软件,不用再直接使用复杂的Numpy数学矩阵模块。系统化的Sklearn函数和API中文文档,可作为案头工具书随时查阅。基于Sklearn+Pandas模式,无须任何理论基础,全程采用MBA案例模式,懂Excel就可看懂。
何海群,网名:字王,CHRD前海智库CTO,《中华大字库》发明人,出版书籍20余部,在人工智能、数据分析等方面具有20年一线专业经验;zwPython开发平台、zwQuant量化软件设计师,中国“Python创客”项目和“Python产业联盟”发起人,国内**Python量化课程:《Python量化实盘·魔鬼训练营》创始人,极宽量化开源团队的创始人。1990年,发明国内**个VR数据手套并获得专利授权,被业界称为“中国VR之父”;1992年,论文《人工智能与中文字型设计》入选《广东青年科学家文集》,现已成为中文字库行业三大基础建模理论之一;1997年,出版国内首部网络经济专著《网络商战》;2008年,在北京联合创办国内**4A级网络公关公司,服务过200余家国际五百强企业,被公关协会誉为:中国网络公关事业的开创者与启蒙者;2012年,发布国内**自主研发的智能中文字库设计软件《x2ttf涂鸦造字》,全功能全免费公益软件;2016年,推出国内首套纯python开源量化软件:zwQuant,以及国内**Tick级别开源金融大数据项目:zwDat金融数据包。研究成果有:“小数据”理论,快数据模型,黑天鹅算法,GPU超算工作站、MTRD多节点超算集群算法、“1+N”网络传播模型、人工智能“足彩图灵法则”等。
第 1 章 从阿尔法狗开始说起1
1.1 阿尔法狗的前世今生
1.2 机器学习是什么
1.3 机器学习大史记
1.4 机器学习经典案例
第 2 章 开发环境
2.1 数据分析首选 Python
2.2 用户运行平台
2.3 程序目录结构
2.4 Spyder 编辑器界面设置
2.5 Python 命令行模式
2.6 Notebook 模式
2.7 模块库控制面板
2.8 使用 pip 更新模块库
第 3 章 Python 入门案例
3.1 案例 3-1:第一次编程“hello,ziwang”
3.2 案例 3-2:增强版“hello,ziwang”
3.3 案例 3-3:列举系统模块库清单
3.4 案例 3-4:常用绘图风格
3.5 案例 3-5:Pandas 常用绘图风格
3.6 案例 3-6:常用颜色表 cors
3.7 案例源码
第 4 章 Python 基本语法
4.1 数据类型
案例 4-1:基本运算
4.2 字符串
案例 4-2:字符串入门
案例 4-3:字符串常用方法
4.3 List 列表
案例 4-4:列表操作
4.4 Tuple 元组
案例 4-5:元组操作
4.5 Dictionary 字典
案例 4-6:字典操作
4.6 数据类型转换
案例 4-7:控制语句
案例 4-8:函数定义
4.7 案例源码
第 5 章 Python 人工智能入门与实践
5.1 从忘却开始
5.2 Iris 经典爱丽丝
案例 5-1:Iris 爱丽丝
案例 5-2:爱丽丝进化与文本矢量化
5.3 AI 操作流程
5.4 数据切割函数
案例 5-3:Iris 爱丽丝分解
案例 5-4:线性回归算法
5.5 案例源码
第 6 章 机器学习经典算法案例(上)
6.1 线性回归
6.2 逻辑回归算法
案例 6-1:逻辑回归算法
6.3 朴素贝叶斯算法
案例 6-2:贝叶斯算法
6.4 KNN 近邻算法
案例 6-3:KNN 近邻算法
6.5 随机森林算法
案例 6-4:随机森林算法
6.6 案例源码
第 7 章 机器学习经典算法案例(下)
7.1 决策树算法
案例 7-1:决策树算法
7.2 GBDT 迭代决策树算法
案例 7-2:GBDT 迭代决策树算法
7.3 SVM 向量机
案例 7-3:SVM 向量机算法
7.4 SVM-cross 向量机交叉算法
案例 7-4:SVM-cross 向量机交叉算法
7.5 神经网络算法
案例 7-5:MLP 神经网络算法
案例 7-6:MLP_reg 神经网络回归算法
7.6 案例源码
第 8 章 机器学习组合算法
8.1 CCPP 数据集
案例 8-1:CCPP 数据集
案例 8-2:CCPP 数据切割
案例 8-3:读取 CCPP 数据集
8.2 机器学习统一接口函数
案例 8-4:机器学习统一接口
案例 8-5:批量调用机器学习算法
案例 8-6:一体化调用
8.3 模型预制与保存
案例 8-7:储存算法模型
案例 8-8:批量储存算法模型
案例 8-9:批量加载算法模型
案例 8-10:机器学习组合算法
8.4 案例源码
附录 A Sklearn 常用模块和函数
附录 B 极宽量化系统模块图
好好好好好好好好好好好好
评分好好好好好好好好好好好好
评分不错,推荐,好!!!!
评分书不厚,合适入门级,特别像我这样的。
评分表面有挤压,明显是被狠狠地挤压了,造成了无法挽回的变形。表面有破损,明显有划痕
评分简单了解一下可以,真用来入门还差了些
评分开始学习python!!!!
评分我一般不评价,但这本书作为技术书籍就是个奇葩,作者的语言都把我雷到了!这个应该是一个不懂技术的人写来给不懂技术的人看的!
评分作者结合实际经验进行讲解,帮助入门者快速入门
零起点Python机器学习快速入门 pdf epub mobi txt 电子书 下载