发表于2025-05-08
高校核心课程学习指导丛书:数学分析范例选解 pdf epub mobi txt 电子书 下载
又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
评分又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
评分书轻微受损,还有些脏
评分此用户未填写评价内容
评分发展历史编辑
评分数学分析的研究对象是函数,它从局部和整体这两个方面研究函数的基本性态,从而形成微分学和积分学的基本内容。微分学研究变化率等函数的局部特征,导数和微分是它的主要概念,求导数的过程就是微分法。围绕着导数与微分的性质、计算和直接应用,形成微分学的主要内容。积分学则从总体上研究微小变化(尤其是非均匀变化)积累的总效果,其基本概念是原函数(反导数)和定积分,求积分的过程就是积分法。积分的性质、计算、推广与直接应用构成积分学的全部内容。牛顿和莱布尼茨对数学的杰出贡献就在于,他们在1670年左右,总结了求导数与求积分的一系列基本法则,发现了求导数与求积分是两种互逆的运算,并通过后来以他们的名字命名的著名公式—牛顿-莱布尼茨公式—反映了这种互逆关系,从而使本来各自独立发展的微分学和积分学结合而成一门新的学科—微积分学。又由于他们及一些后继学者(特别是欧拉(Euler))的贡献,使得本来仅为少数数学家所了解,只能相当艰难地处理一些个别具体问题的微分与积分方法,成为一种常人稍加训练即可掌握的近于机械的方法,打开了把它广泛应用于科学技术领域的大门,其影响所及,难以估量。因此,微积分的出现与发展被认为是人类文明史上划时代的事件之一。与积分相比,无穷级数也是微小量的叠加与积累,只不过取离散的形式(积分是连续的形式)。因此,在数学分析中,无穷级数与微积分从来都是密不可分和相辅相成的。在历史上,无穷级数的使用由来已久,但只在成为数学分析的一部分后,才得到真正的发展和广泛应用。
评分牛顿
评分内容深厚,达到大学生数学竞赛的高度
评分书很好,是正版,送货很快。
高校核心课程学习指导丛书:数学分析范例选解 pdf epub mobi txt 电子书 下载