发表于2025-02-23
高校核心课程学习指导丛书:微积分学习指导(上册) pdf epub mobi txt 电子书 下载
序
前言
第1章 极限与连续
1.1 预备知识
1.2 数列极限
1.3 函数极限
1.4 函数的连续性
第2章 单变量函数的微分学
2.1 函数的导数
2.2 函数的微分
2.3 微分中值定理
2.4 未定式的极限与洛必达法则
2.5 泰勒公式
2.6 导数的应用
第3章 单变量函数的积分学
3.1 不定积分的概念与性质
3.2 不定积分的计算方法
3.3 定积分的概念和可积函数
3.4 定积分的基本性质与微积分基本定理
3.5 定积分的计算力法
3.6 定积分的应用
3.7 广义积分
第4章 微分方程
4.1 微分方程的基本概念
4.2 一阶微分方程
4.3 可降阶的二阶微分方程
4.4 二阶线性微分方程解的结构
4.5 二阶常系数线性微分方程
综合练习题
部分综合练习题解答或提示
12,热传导方程的推导、连续性方程的推导、连续介质力学基本方程的推导、波动方程的推导。
评分8,第一型曲面与曲线积分、第二型曲面与曲线积分、Green公式、Gauss-Ostrogradsky公式、一般的Stokes公式、Riemann流形、Riemann流形上的Stokes公式、李群上的积分。
评分8,第一型曲面与曲线积分、第二型曲面与曲线积分、Green公式、Gauss-Ostrogradsky公式、一般的Stokes公式、Riemann流形、Riemann流形上的Stokes公式、李群上的积分。
评分5,完全有界与等度连续、Arzela-Ascoli定理、Weierstrass逼近定理、Stone-Weierstrass定理、幂级数在组合数学中的应用。
评分还可以
评分3,向量与纯量、线性组合、线性相关与线性无关、基与维数、矩阵的秩、线性方程组的可解性准则、线性映射、线性变换、线性函数、矩阵的运算、逆矩阵、矩阵的等价类、线性方程组的解空间。
评分1,R^n中的Jordan测度、多重Riemann积分、Riemann可积性、Lebesgue定理、上积分与下积分、Darboux可积性定理、容许集、集合上的Riemann积分、多重Riemann积分的可加性、多重Riemann积分的估计。
评分11,Fourier变换、Fourier积分、Fourier积分的点状收敛定理、速降函数空间、Fourier变换的运算性质、反演公式、Parseval等式、 Fourier变换与卷积、Fourier变换在数学物理方程中的应用、Possion求和公式。
评分6,阶梯函数的积分、上函数的积分、一般区间上的Lebesgue可积函数类、Lebesgue积分的基本性质、Levi单调收敛定理、Lebesgue控制收敛定理、Lebesgue 广义积分。
高校核心课程学习指导丛书:微积分学习指导(上册) pdf epub mobi txt 电子书 下载