發表於2025-05-22
高校核心課程學習指導叢書:微積分學習指導(上冊) pdf epub mobi txt 電子書 下載
序
前言
第1章 極限與連續
1.1 預備知識
1.2 數列極限
1.3 函數極限
1.4 函數的連續性
第2章 單變量函數的微分學
2.1 函數的導數
2.2 函數的微分
2.3 微分中值定理
2.4 未定式的極限與洛必達法則
2.5 泰勒公式
2.6 導數的應用
第3章 單變量函數的積分學
3.1 不定積分的概念與性質
3.2 不定積分的計算方法
3.3 定積分的概念和可積函數
3.4 定積分的基本性質與微積分基本定理
3.5 定積分的計算力法
3.6 定積分的應用
3.7 廣義積分
第4章 微分方程
4.1 微分方程的基本概念
4.2 一階微分方程
4.3 可降階的二階微分方程
4.4 二階綫性微分方程解的結構
4.5 二階常係數綫性微分方程
綜閤練習題
部分綜閤練習題解答或提示
5,完全有界與等度連續、Arzela-Ascoli定理、Weierstrass逼近定理、Stone-Weierstrass定理、冪級數在組閤數學中的應用。
評分10,正交函數係、Pythagoras定理、Fourier級數與Fourier係數、Fourier級數的極限性質、完備正交係、三角級數、三角級數的平均收斂性與逐點收斂、Riemann引理、推廣的Fourier引理、局部化原理、Fejer定理、Weierstrass第近定理、三角函數係的完備性、Parseval等式、等周不等式。
評分數學分析(A)-4
評分速度真快
評分1,R^n中的Jordan測度、多重Riemann積分、Riemann可積性、Lebesgue定理、上積分與下積分、Darboux可積性定理、容許集、集閤上的Riemann積分、多重Riemann積分的可加性、多重Riemann積分的估計。
評分 評分8,Lebesgue可測函數、可測性與可積性之間的關係、Lebesgue積分號下取極限、交換積分順序、Lebesgue測度、Lebesgue可測集、平方可積函數集、Riesz-Fischer定理。
評分8,第一型麯麵與麯綫積分、第二型麯麵與麯綫積分、Green公式、Gauss-Ostrogradsky公式、一般的Stokes公式、Riemann流形、Riemann流形上的Stokes公式、李群上的積分。
評分有些地方要自己去百度,題目量比較少。
高校核心課程學習指導叢書:微積分學習指導(上冊) pdf epub mobi txt 電子書 下載