孤立子理论中的哈密顿方法 [Hamiltonian Methods in the Theory of Solitons] pdf epub mobi txt 电子书 下载 2024

图书介绍


孤立子理论中的哈密顿方法 [Hamiltonian Methods in the Theory of Solitons]

简体网页||繁体网页
L.D.法捷耶夫(Ludwig D.Faddeev) 著



点击这里下载
    


想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-22

类似图书 点击查看全场最低价

出版社: 世界图书出版公司
ISBN:9787510058264
版次:1
商品编码:11321055
包装:平装
外文名称:Hamiltonian Methods in the Theory of Solitons
开本:24开
出版时间:2013-03-01
用纸:胶版纸
页数:592
正文语种:英文

孤立子理论中的哈密顿方法 [Hamiltonian Methods in the Theory of Solitons] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

相关图书



孤立子理论中的哈密顿方法 [Hamiltonian Methods in the Theory of Solitons] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

孤立子理论中的哈密顿方法 [Hamiltonian Methods in the Theory of Solitons] pdf epub mobi txt 电子书 下载



具体描述

内容简介

  The book is based on the Hamiltonian interpretation of the method, hence the title. Methods of differential geometry and Hamiitonian formalism in particular are very popular in modern mathematical physics. It is precisely the general Hamiltonian formalism that presents the inverse scattering method in its most elegant form. Moreover, the Hamiltonian formalism provides a link between classical and quantum mechanics. So the book is not only an introduction to the classical soliton theory but also the groundwork for the quantum theory of solitons, to be discussed in another volume.
  The book is addressed to specialists in mathematical physics. This has determined the choice of material and the level of mathematical rigour. We hope that it will also be of interest to mathematicians of other specialities and to theoretical physicists as well. Still, being a mathematical treatise it does not contain applications of soliton theory to specific physical phenomena.

内页插图

目录

Introduction References
Part One The Nonlinear Schrodinger Equation (NS Model)
Chapter Ⅰ Zero Curvature Representation
1.Formulation of the NS Model
2.Zero Curvature Condition
3.Properties of the Monodromy Matrix in the Quasi-Periodic Case
4.Local Integrals of the Motion
5.The Monodromy Matrix in the Rapidly Decreasing Case
6.Analytic Properties of Transition Coefficients
7.The Dynamics of Transition Coefficients
8.The Case of Finite Density.Jost Solutions
9.The Case of Finite Density.Transition Coefficients
10.The Case of Finite Density.Time Dynamics and Integrals of the Motion
1.Notes and References
References
Chapter Ⅱ The Riemann Problem
1.The Rapidly Decreasing Case.Formulation of the Riemann Problem
2.The Rapidly Decreasing Case.Analysis of the Riemann Problem
3.Application of the Inverse Scattering Problem to the NS Model
4.Relationship Between the Riemann Problem Method and the Gelfand-Levitan-Marchenko Integral Equations Formulation
5.The Rapidly Decreasing Case.Soliton Solutions
6.Solution of the Inverse Problem in the Case of Finite Density.The Riemann Problem Method
7.Solution of the Inverse Problem in the Case of Finite Density.The Gelfand-Levitan-Marchenko Formulation
8.Soliton Solutions in the Case of Finite Density
9.Notes and References References
Chapter Ⅲ The Hamiltonian Formulation
1.Fundamental Poisson Brackets and the /"-Matrix
2.Poisson Commutativity of the Motion Integrals in the Quasi-Periodic Case
3.Derivation of the Zero Curvature Representation from the Fundamental Poisson Brackets
4.Integrals of the Motion in the Rapidly Decreasing Case and in the Case of Finite Density
5.The A-Operator and a Hierarchy of Poisson Structures
6.Poisson Brackets of Transition Coefficients in the Rapidly Decreasing Case
7.Action-Angle Variables in the Rapidly Decreasing Case
8.Soliton Dynamics from the Hamiltonian Point of View
9.Complete Integrability in the Case of Finite Density
10.Notes and References
References

Part Two General Theory of Integrable Evolution Equations
Chapter Ⅰ Basic Examples and Their General Properties
1.Formulation of the Basic Continuous Models
2.Examples of Lattice Models
3.Zero Curvature Representation's a Method for Constructing Integrable Equations
4.Gauge Equivalence of the NS Model (#=-1) and the HM Model
5.Hamiltonian Formulation of the Chiral Field Equations and Related Models
6.The Riemann Problem as a Method for Constructing Solutions of Integrable Equations
7.A Scheme for Constructing the General Solution of the Zero Curvature Equation. Concluding Remarks on Integrable Equations
8.Notes and References
References
Chapter Ⅱ Fundamental Continuous Models
1.The Auxiliary Linear Problem for the HM Model
2.The Inverse Problem for the HM Model
3.Hamiltonian Formulation of the HM Model 4.The Auxiliary Linear Problem for the SG Model
5.The Inverse Problem for the SG Model
6.Hamiltonian Formulation of the SG Model
Chapter Ⅲ Fundamental Models on the Lattice
Chapter Ⅳ Lie-Algebraic Approach to the Classification and Analysis of Integrable Models Conclusion List of Symbols Index
……
Conclusion
List of Symbols
Index

前言/序言



孤立子理论中的哈密顿方法 [Hamiltonian Methods in the Theory of Solitons] 电子书 下载 mobi epub pdf txt

孤立子理论中的哈密顿方法 [Hamiltonian Methods in the Theory of Solitons] pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

类似图书 点击查看全场最低价

孤立子理论中的哈密顿方法 [Hamiltonian Methods in the Theory of Solitons] pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


孤立子理论中的哈密顿方法 [Hamiltonian Methods in the Theory of Solitons] bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 windowsfront.com All Rights Reserved. 静流书站 版权所有