数学·统计学系列:近代拓扑学研究 [Modern Topology Research] pdf epub mobi txt 电子书 下载 2024

图书介绍


数学·统计学系列:近代拓扑学研究 [Modern Topology Research]

简体网页||繁体网页
[美] 希尔顿 等 著,林聪源 译



点击这里下载
    


想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-23

类似图书 点击查看全场最低价

出版社: 哈尔滨工业大学出版社
ISBN:9787560339153
版次:1
商品编码:11312405
包装:平装
外文名称:Modern Topology Research
开本:16开
出版时间:2012-12-01
用纸:胶版纸
页数:168
正文语种:中文

数学·统计学系列:近代拓扑学研究 [Modern Topology Research] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

相关图书



数学·统计学系列:近代拓扑学研究 [Modern Topology Research] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

数学·统计学系列:近代拓扑学研究 [Modern Topology Research] pdf epub mobi txt 电子书 下载



具体描述

内容简介

  《数学·统计学系列:近代拓扑学研究》主要是对近代拓扑学的研究,《数学·统计学系列:近代拓扑学研究》一共分为5章,第1章主要讲述了曲线是什么,第2章列举了3维流形中曲面的一些研究成果,第3章主要讲述了半单纯同伦理论,第4章为代数拓扑学之函子,第5章介绍了可微分流形上的几何理论。

目录

引言
第1章 曲线是什么
1.1 引言
1.2 古典观念
1.3 维数、弧、曲面、立体的一般定义
1.4 一些简单形式的弧
1.5 拓扑分析上的解析曲线
1.6 结语
参考资料

第2章 3维流形中曲面的一些研究成果
2.1 引言
2.2 Heegaard曲面及3维流形中之非可压缩曲面
2.3 半线性观点
2.4 非可压缩曲面上的有限性定理
2.5 应用1:开同伦3维胞腔上的一个猜想
2.6 应用2:3维流形的胞腔分解
2.7 不可压缩的2度圆球壳及Heegaard曲面
参考资料

第3章 半单纯同伦理论
3.1 基础
3.2 拟几何同伦理论
3.3 实现论
3.4 Moore-Postnikov系统
3.5 群复合形
3.6 可换群复合形
3.7 同调与同伦间的关系
3.8 Hi1ton及Mi1nor的一个定义
参考资料

第4章 代数拓扑学之函子
4.1 同伦论/
4.2 同调及余同调
4.3 同调及余同调之进一步性质
参考资料

第5章 可微分流形上的几何理论
5.1 引言
5.2 可微分流形中的一些基本定义
5.3 向量丛理论的复习
5.4 Thom氏贯截性定理
5.5 Thom氏贯截性定理的一些推广及应用
5.6 Thom氏余边界理论
5.7 流形上之Morse函数理论
5.8 余边界及Morse理论
参考资料
编辑手记
数学·统计学系列:近代拓扑学研究 [Modern Topology Research] 电子书 下载 mobi epub pdf txt

数学·统计学系列:近代拓扑学研究 [Modern Topology Research] pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

1,Bloch定理、Picard小定理、Schottky定理、Montel-Caratheodory定理、Picard大定理、共形映射在流体力学上的应用。

评分

13,用Jordan标准型求解常系数线性微分方程、线性微分方程的解空间、非齐次线性微分方程的解、复数振幅法、共振。

评分

评分

12,具有复相空间的线性微分方程、奇点的分类、特征方程具有单根的线性方程的通解。

评分

11,同余群、同余群的模形式、单连通流形上的函数的整体连续。

评分

3,一阶非齐次线性偏微分方程、一阶拟线性偏微分方程、一阶拟线性偏微分方程的特征线素场、线素场的积分曲面、一阶拟线性偏微分方程解的充要条件、一阶非线性偏微分方程、Hamilton-Jacobi方程、能量的等高线、 Hadamard引理、临界与非临界等高线。

评分

《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书

评分

10,高阶微分方程与一阶微分方程组的关系、高阶微分方程的存在性与唯一性、高阶微分方程的可微性与延拓定理、微分方程组的相空间的维数、接触结构、变分方程、自治系统。

评分

类似图书 点击查看全场最低价

数学·统计学系列:近代拓扑学研究 [Modern Topology Research] pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


数学·统计学系列:近代拓扑学研究 [Modern Topology Research] bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 windowsfront.com All Rights Reserved. 静流书站 版权所有