数学经典教材:经典位势论及其对应的概率论(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart] pdf epub mobi txt 电子书 下载 2025

图书介绍


数学经典教材:经典位势论及其对应的概率论(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart]

简体网页||繁体网页
[美] 杜布(Doob J.L.) 著



点击这里下载
    


想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-22

类似图书 点击查看全场最低价

出版社: 世界图书出版公司
ISBN:9787510058417
版次:1
商品编码:11273583
包装:平装
外文名称:Classical Potential Theory and Its Probabilistic Counterpart
开本:24开
出版时间:2013-03-01
用纸:胶版纸
页数:846
正文语种:英文

数学经典教材:经典位势论及其对应的概率论(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2025

相关图书



数学经典教材:经典位势论及其对应的概率论(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2025

数学经典教材:经典位势论及其对应的概率论(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart] pdf epub mobi txt 电子书 下载



具体描述

内容简介

  Potential theory and certain aspects of probability theory are intimately related, perhaps most obviously in that the transition function determining a Markov process can be used to define the Green function of a potential theory. Thus it is possible to define and develop many potential theoretic concepts probabilistically, a procedure potential theorists observe with jaun- diced eyes in view of the fact that now as in the past their subject provides the motivation for much of Markov process theory. However that may be it is clear that certain concepts in potential theory correspond closely to concepts in probability theory, specifically to concepts in martingale theory.For example, superharmonic functions correspond to supermartingales. More specifically: the Fatou type boundary limit theorems in potential theory correspond to supermartingale convergence theorems; the limit properties of monotone sequences of superharmonic functions correspond surprisingly closely to limit properties of monotone sequences of super- martingales; certain positive superharmonic functions [supermartingales] are called "potentials," have associated measures in their respective theories and are subject to domination principles (inequalities) invomng the supports of those measures; in each theory there is a reduction operation whose properties are the same in the two theories and these reductions induce sweeping (balayage) of the measures associated with potentials, and,so on.

内页插图

目录

Introduction
Notation and Conventions
Part 1
Classical and Parabolic Potential Theory
Chapter I
Introduction to the Mathematical Background of Classical Potential Theory
1.The Context of Green's Identity
2.Function Averages
3.Harmonic Functions
4.Maximum-Minimum Theorem for Harmonic Functions
5.The Fundamental Kernel for RN and Its Potentials
6.Gauss Integral Theorem
7.The Smoothness of Potentials ; The Poisson Equation
8.Harmonic Measure and the Riesz Decomposition
Chapter II
Basic Properties of Harmonic, Subharmonic, and Superharmonic Functions
1.The Green Function of a Ball; The Poisson Integral
2.Hamack's Inequality
3.Convergence of Directed Sets of Harmonic Functions
4.Harmonic, Subharmonic, and Superharmoruc Functions
5.Minimum Theorem for Superharmonic Functions
6.Application of the Operation TB
7.Characterization of Superharmonic Functions in Terms of Harmonic Functions
8.Differentiable Superharmonic Functions
9.Application of Jensen's Inequality
10.Superharmonic Funaions on an Annulus
II.Examples
12.The Kelvin Transformation
13.Greenian Sets
14.The L1(uB_) and D(uB_) Classes of Harmonic Functions on a Ball B; The
Riesz-Herglotz Theorem
15.The Fatou Boundary Limit Theorem
16.Minimal Harmonic Functions
Chapter III
Infima of Families of Superharmonic Functidns
1.Least Superharmonic Majorant (LM) and Greatest Subharmonic Minorant (GM)
2.Generalization of Theorem I
3.Fundamental Convergence Theorem (Preliminary Version)
4.The Reduction Operation
5.Reduction Properties
6.A Smallness Property of Reductions on Compact Sets
7.The Natural (Pointwise) Order Decomposition for Positive Superharmonk
Functions
Chapter 1V
Potentials on Special Open Sets
1.Special Open Sets, and Potentials on Them
2.Examples
3.A Fundamental Smallness Property of Potentials
4.Increasing Sequences of Potentials
5.Smoothing of a Potential
6.Uniqueness of the Measure Determining a Potential
7.Riesz Measure Associated with a Superharmonic Function
8.Riesz Decomposition Theorem
9.Counterpart for Superharmonic Functions on R2 ofthe Riesz
Decomposition
10.An Approximation Theorem
Chapter V
Polar Sets and Their Applications
1.Definition
2.Superharmonic Functions Associated with a Polar Set
3.Countable Unions of Polar Sets
4.Properties ofPolar Sets
5.Extension of a Superharmonic Function
6.Greenian Sets in IR2 as the Complements of Nonpolar Sets
7.Superharmonic Function Minimum Theorem (Extension of Theorem I1.5)
8.Evans-Vasilesco Theorem
9.Approximation of a Potential by Continuous Potentials
10.The Domination Principle
I1.The Infinity Set of a Potential and the Riesz Measure
……

Part 2
Probabilistic Countrepart of Part 1
Part 3
数学经典教材:经典位势论及其对应的概率论(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart] 电子书 下载 mobi epub pdf txt

数学经典教材:经典位势论及其对应的概率论(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart] pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

一本好书,送货速度很快

评分

一本好书,送货速度很快

评分

评分

这是大师Doob的经典之作,非常喜欢这本书。但遗憾的是这本书的装订不好。“位势论”一词的来源在于,在19世纪的物理学中,自然界的基本力被相信为从满足拉普拉斯方程的位势导出。因此,位势论研究可以作为位势的函数。今天,我们知道自然界更为复杂——表述力的方程可以是诸如爱因斯坦场方程或者杨-米尔斯方程这样的非线性偏微分方程的系统,而拉普拉斯方程只是在受限情况下的近似。但是,“位势论”一词还是保留了作为对满足拉普拉斯方程的函数的研究的方便叫法。位势论和拉普拉斯方程的理论有很大程度的重叠。这个程度是:可能可以在两个领域划分一个区别,区别在于重点而不是主题,并且主要在于下列区别——位势论注重函数的性质而不是方程的性质。例如,调和函数的奇点的一个结果可说属于位势论;而关于解如何依赖于边界条件的一个结果,却是拉普拉斯方程理论。当然,这不是一个严格和显然的区别,实践上两个领域有很大交互,它们的结果和方法相互为用。位势论起源于物理学的万有引力学说和静电学。远在18世纪,拉格朗日就注意到力场是一个函数(称为牛顿位势)的梯度。拉普拉斯进一部证明了,在不分布质量的地方,位势满足偏微分方程△u=0.这样,物理问题便化为求解偏微分方程的数学问题。在19世纪前期,泊松给出了球域上狄利克雷问题解的积分公式;格林对边界充分光滑的有界区域,从物理直观并借助与格林函数给出了解。后来,高斯采用了变分问题解决了平衡问题并得到狄利克雷问题的新解法。狄利克雷和黎曼利用狄利克雷原理给出里解。在19世纪后期,有施瓦兹交错法,特别是庞加莱提出了对后来的发展有重要意义的扫除法。但是,由于缺乏足够的数学工具,这些解法是不严密的。在19世纪,对解的性质也进行了研究。施瓦兹证明了狄利克雷问题解的极值原理;黎曼把位势论与函数论做统一处理,揭示了格林函数、位势与保形映射之间的密切联系;哈莱克建立了哈莱克不等式与哈莱克收敛原理。此外,关于诺依曼问题及多重调和函数的研究也有不少成果。这样一来,到了上世纪末,位势论的三个基本原理,即极小值原理、收敛性质以及狄利克雷问题已经建立。但是,一直到上世纪末,位势论的研究限于n维欧氏空间的牛顿位势(n≥3)和对数位势(n=2),即所谓经典位势论。本世纪以来,随着测度和积分理论、泛函分析、一般拓扑学、抽象代数以及概率论的发展,位势论也得到蓬勃发展,开辟了新的研究方向,创造了新方法,为位势在不分布质量的地方是调和的,所以关于狄利克雷问题的研究一直是位势论中的一个重要内容。由于(G.F.)B.黎曼把位势论和函数论统一处理,以及现代分析的基础理论(如泛函分析、测度论、广义函数、拓扑学等)在位势论中的深入应用,位势论成了数学领域内比较彻底地完成了现代化变革的一个分支。它同黎曼曲面论、偏微分方程、调和分析、概率论等数学分支也有着紧密的联系。 马丁紧致化 是位势论中重要的一种紧致化。 马丁空间与马丁边界 为纪念R.S.马丁,将格林空间相对于函数族紧致化空间惂 称为马丁空间;惂Ω称为马丁边界。所有函数在惂都有连续的开拓且能辨别。惂可度量化。的一般区域的欧氏边界与全然不同;但当是球或其他较为正则的区域时,惂等同于的欧氏闭包;对R2的单连通格林区域,等同于卡拉西奥多里分歧边界。广。它促使了著名的关于凸锥的极端点的绍凯定理的产生并且后者反过来简化了前者的证明。 对马丁边界同样可考虑狄利克雷问题,可讨论一个集在的瘦与肥并进而把Ω上的细拓扑开拓到。对任意上调和函数u0及调和函数上至多除去一个h零测集外处处有细极限,这是杜布对著名的法图定理即球内的正调和函数在边界上几乎处处有不相切极限的重大推广。由于位势论的大部分结果都可由其狄利克雷问题、极值原理和收敛性质三个基本原理导出,且为了适应偏微分方程和随机过程的需要,公理化位势论,即调和空间理论迅速地发展起来,它提供了统一处理问题的方法。从位势论与概率论的密切联系,最明显的是,决定一个马尔可夫过程的转移函数可以用来定义位势论中的格林函数。位势论中的许多概念和原理都有明确的概率意义,特别体现在上鞅理论中,比如上调和函数相应于上鞅。位势论中的法图型边界极限理论相应于上鞅收敛理论;单调上调和函数列的极限性质与单调上鞅的极限过程性质颇为相似;某些上调和函数、上鞅称为位势,它们在各自的理论中都有与之关联的测度,都遵从只涉及这些测度支柱的控制原理,以及在概率论与位势论中,都存在一个性质相同的简化测度,它导出与位势相关联的测度的扫除等等。维纳过程是一种连续时间随机过程,得名于诺伯特·维纳。由于与物理学中的布朗运动有密切关系,也常被称为“布朗运动过程”或简称为布朗运动。维纳过程是莱维过程(指左极限右连续的平稳独立增量随机过程)中最有名的一类,在纯数学、应用数学、经济学与物理学中都有重要应用。

评分

评分

一本好书,送货速度很快

评分

类似图书 点击查看全场最低价

数学经典教材:经典位势论及其对应的概率论(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart] pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


数学经典教材:经典位势论及其对应的概率论(影印版)(英文版) [Classical Potential Theory and Its Probabilistic Counterpart] bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 windowsfront.com All Rights Reserved. 静流书站 版权所有