內容簡介
《華章數學原版精品係列:代數(英文版·第2版)》是作者在代數領域數十年的智慧和經驗的結晶。書中既介紹瞭矩陣運算、群、嚮量空間、綫性算子、對稱等較為基本的內容,又介紹瞭環、模型、域、伽羅瓦理論等較為高深的內容。本書對於提高數學理解能力,增強對代數的興趣是非常有益處的。此外,本書的可閱讀性強,書中的習題也很有針對性,能讓讀者很快地掌握分析和思考的方法。
作者結閤這20年來的教學經曆及讀者的反饋,對本版進行瞭全麵更新,更強調對稱性、綫性群、二次數域和格等具體主題。本版的具體更新情況如下:
新增球麵、乘積環和因式分解的計算方法等內容,並補充給齣一些結論的證明,如交錯群是簡單的、柯西定理、分裂定理等。
修訂瞭對對應定理、su2 錶示、正交關係等內容的討論,並把綫性變換和因子分解都拆分為兩章來介紹。
新增大量習題,並用星號標注齣具有挑戰性的習題。
《華章數學原版精品係列:代數(英文版·第2版)》在麻省理工學院、普林斯頓大學、哥倫比亞大學等著名學府得到瞭廣泛采用,是代數學的經典教材之一。
作者簡介
Michael Artin,當代領袖型代數學傢與代數幾何學傢之一,美國麻省理工學院數學係榮譽退休教授。1990年至1992年,曾擔任美國數學學會主席。由於他在交換代數與非交換代數、環論以及現代代數幾何學等方麵做齣的貢獻,2002年獲得美國數學學會頒發的Leroy P.Steele終身成就奬。Artin的主要貢獻包括他的逼近定理、在解決沙法列維奇-泰特猜測中的工作以及為推廣“概形”而創建的“代數空間”概念。
目錄
Preface
1 Matrices
1.1 The Basic Operations
1.2 Row Reduction
1.3 The Matrix Transpose
1.4 Deternunants
1.5 Permutations
1.6 Other Formulas for the Determinant
Exercises
2 Groups
2.1 Laws ofComposition
2.2 Groups and Subgroups
2.3 Subgroups of the Additive Group of Intege
2.4 Cyclic Groups
2.5 Homomorphisms
2.6 Isomorphisms
2.7 Equivalence Relations and Partitions
2.8 Cosets
2.9 Modular Arithmetic
2.10 The Correspondence Theorem
2.11 Ptoduct Groups
2.12 Quotient Groups
Exercises
3 VectorSpaces
3.1 SubspacesoflRn
3.2 Fields
3.3 Vector Spaces
3.4 Bases and Dimension
3.5 Computing with Bases
3.6 DirectSums
3.7 Infinite-DimensionalSpaces
Exercises
4 LinearOperators
4.1 The Dimension Formula
4.2 The Matrix of a Linear Transformation
4.3 Linear Operators
4.4 Eigenvectors
4.5 The Characteristic Polynomial
4.6 Triangular and DiagonaIForms
4.7 JordanForm
Exercises
5 Applications ofLinear Operators
5.1 OrthogonaIMatrices and Rotations
5.2 Using Continuity
5.3 Systems ofDifferentialEquations
5.4 The Matrix Exponential
Exercises
6 Symmetry
6.1 Symmetry ofPlane Figures
6.2 Isometries
6.3 Isometries ofthe Plane
6.4 Finite Groups of Orthogonal Operators on the Pl
6.5 Discrete Groups oflsometries
6.6 Plane Crystallographic Groups
6.7 Abstract Symmetry: Group Operations
6.8 The Operation on Cosets
6.9 The Counting Formula
6.10 Operations on Subsets
6.11 Permutation Representations
6.12 Finite Subgroups ofthe Rotation Group
Exercises
7 More Group Theory
7.1 Cayley's Theorem
7.2 The Class Equation
7.3 Groups
7.4 The Class Equation of the IcosahedraIGroup
7.5 Conjugationin the Symmetric Group
7.6 Normalizers
7.7 The Sylow Theorems
7.8 Groups ofOrder12
7.9 TheFreeGroup
7.10 Generators and Relations
7.11 The Todd-Coxeter Algorithm
Exercises
8 BilinearForms
8.1 BilinearForms
8.2 SymmetricForms
……
9 Linear Groups
10 Group Representations
11 Rings
12 Factoring
13 Quadratic Number Fields
14 Linear Algebra in a Ring
15 Fields
16 Galois theory
前言/序言
alt="" />
華章數學原版精品係列:代數(英文版·第2版) 下載 mobi epub pdf txt 電子書