內容簡介
The first one is purely algebraic. Its objective is the classification ofquadratic forms over the field of rational numbers (Hasse-Minkowskitheorem). It is achieved in Chapter IV. The first three chapters contain somepreliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols.Chapter V applies the preceding results to integral quadratic forms indiscriminant + 1. These forms occur in various questions: modular functions,differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor-phic functions). Chapter VI gives the proof of the "theorem on arithmeticprogressions" due to Dirichlet; this theorem is used at a critical point in thefirst part (Chapter 111, no. 2.2). Chapter VII deals with modular forms,and in particular, with theta functions. Some of the quadratic forms ofChapter V reappear here.
內頁插圖
目錄
Preface
Part I-Algebraic Methods
ChapterI Finite fields
1-Generalities
2-Equations over a finite field
3-Quadratic reciprocity law
Appendix-Another proof of the quadratic reciprocity law
Chapter II p-adic fields
1-The ring Zp and the field
2-p-adic equations
3-The multiplicative group of
Chapter II nHilbert symbol
1-Local properties
2-Global properties
Chapter IV Quadratic forms over Qp and over Q
1-Quadratic forms
2-Quadratic forms over Q
3-Quadratic forms over Q
Appendix Sums of three squares
Chapter V Integral quadratic forms with discriminant
1-Preliminaries
2-Statement of results
3-Proofs
Part II-Analytic Methods
Chapter VI-The theorem on arithmetic progressions
1-Characters of finite abelian groups
2-Dirichlet series
3-Zeta function and L functions
4-Density and Dirichlet theorem
Chapter Vll-Modular forms
1-The modular group
2-Modular functions
3-The space of modular forms
4-Expansions at infinity
5-Hecke operators
6-Theta functions
Bibliography
Index of Definitions
Index of Notations
前言/序言
This book is divided into two parts.
The first one is purely algebraic. Its objective is the classification ofquadratic forms over the field of rational numbers (Hasse-Minkowskitheorem). It is achieved in Chapter IV. The first three chapters contain somepreliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols.Chapter V applies the preceding results to integral quadratic forms indiscriminant + 1. These forms occur in various questions: modular functions,differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor-phic functions). Chapter VI gives the proof of the "theorem on arithmeticprogressions" due to Dirichlet; this theorem is used at a critical point in thefirst part (Chapter 111, no. 2.2). Chapter VII deals with modular forms,and in particular, with theta functions. Some of the quadratic forms ofChapter V reappear here.
The two parts correspond to lectures given in 1962 and 1964 to secondyear students at the Ecole Normale Superieure. A redaction of these lecturesin the form of duplicated notes, was made by J.-J. Saosuc (Chapters l-IV)and J.-P. Ramis and G. Ruget (Chapters VI-VIi). They were very useful tome; I extend here my gratitude to their authors.
算術教程(英文版) [A Course in Arithmetic] 下載 mobi epub pdf txt 電子書
評分
☆☆☆☆☆
讀者有一定的基本同調代數和代數拓撲知識就可以理解本書。每章末都附有練習,這些可以幫助學生更好的理解書中的知識體係。附錄給齣瞭部分習題的解答。第二版中在內容上做瞭較大的改動,增加瞭80多例子和大量更深層次的內容,如,Cech上同調、Oliver變換、插值理論、廣義流形、局部齊性空間、同調縴維和p進變換群。目次:層和準層;層上同調;與其他上同調定理的比較;譜序列的應用;Borel-Moore同調;上層和ech同調。
評分
☆☆☆☆☆
古代算術工具
評分
☆☆☆☆☆
九章算術中的勾股定理
評分
☆☆☆☆☆
讀者有一定的基本同調代數和代數拓撲知識就可以理解本書。每章末都附有練習,這些可以幫助學生更好的理解書中的知識體係。附錄給齣瞭部分習題的解答。第二版中在內容上做瞭較大的改動,增加瞭80多例子和大量更深層次的內容,如,Cech上同調、Oliver變換、插值理論、廣義流形、局部齊性空間、同調縴維和p進變換群。目次:層和準層;層上同調;與其他上同調定理的比較;譜序列的應用;Borel-Moore同調;上層和ech同調。
評分
☆☆☆☆☆
讀者對象:數學專業的高年級本科生、研究生和相關專業的學者本書主要講述具有一般係數體係拓撲空間的上同調理論。層論包括對代數拓撲很重要的領域。書中有好多創新點,引進不少新概念,全書內容貫穿一緻。證實瞭廣義同調空間中層理論上同調滿足同調基本特性的事實。將相對上同調引入層理論中。
評分
☆☆☆☆☆
有些難度的一本書,值得數學係數論代數專業的學生讀一下。
評分
☆☆☆☆☆
Springer的書必屬經典
評分
☆☆☆☆☆
好
評分
☆☆☆☆☆
很棒