发表于2024-11-05
贝叶斯多目标跟踪-(第2版) pdf epub mobi txt 电子书 下载
*1章&xbsp; 跟踪问题
&xbsp; 1.1&xbsp; 跟踪问题描述
&xbsp;&xbsp;&xbsp; 1.1.1&xbsp; 观测和运动模型
&xbsp;&xbsp;&xbsp; 1.1.2&xbsp; 估计
&xbsp;&xbsp;&xbsp; 1.1.3&xbsp; 滤波
&xbsp; 1.2&xbsp; 例1:跟踪1艘水面舰艇
&xbsp;&xbsp;&xbsp; 1.2.1&xbsp; 目标状态的先验分布
&xbsp;&xbsp;&xbsp; 1.2.2&xbsp; 运动模型
&xbsp;&xbsp;&xbsp; 1.2.3&xbsp; 测量模型
&xbsp;&xbsp;&xbsp; 1.2.4&xbsp; 跟踪输出
&xbsp; 1.3&xbsp; 例2:纯方位跟踪
&xbsp;&xbsp;&xbsp; 1.3.1&xbsp; 例子描述
&xbsp;&xbsp;&xbsp; 1.3.2&xbsp; 先验分布
&xbsp;&xbsp;&xbsp; 1.3.3&xbsp; 运动模型
&xbsp;&xbsp;&xbsp; 1.3.4&xbsp; 测量模型
&xbsp;&xbsp;&xbsp; 1.3.5&xbsp; 粒子滤波描述
&xbsp;&xbsp;&xbsp; 1.3.6&xbsp; 评述
&xbsp;&xbsp;&xbsp; 1.3.7&xbsp; 跟踪输出
&xbsp; 1.4&xbsp; 例3:潜望镜探测和跟踪
&xbsp;&xbsp;&xbsp; 1.4.1&xbsp; 目标跟踪
&xbsp;&xbsp;&xbsp; 1.4.2&xbsp; 例子
&xbsp; 1.5&xbsp; 例4:多目标跟踪
&xbsp;&xbsp;&xbsp; 1.5.1&xbsp; 软相关
&xbsp; 1.6&xbsp; 小结
&xbsp; 参考文献
*2章&xbsp; 贝叶斯推断和似然函数
&xbsp; 2.1&xbsp; 贝叶斯推断的情形
&xbsp;&xbsp;&xbsp; 2.1.1&xbsp; 频率论者的观点
&xbsp;&xbsp;&xbsp; 2.1.2&xbsp; 条件论者的观点
&xbsp;&xbsp;&xbsp; 2.1.3&xbsp; 贝叶斯论者的观点
&xbsp; 2.2&xbsp; 似然函数和贝叶斯原理
&xbsp;&xbsp;&xbsp; 2.2.1&xbsp; 似然函数
&xbsp;&xbsp;&xbsp; 2.2.2&xbsp; 贝叶斯原理
&xbsp;&xbsp;&xbsp; 2.2.3&xbsp; 贝叶斯原理的序贯性质
&xbsp; 2.3&xbsp; 似然函数的例子
&xbsp;&xbsp;&xbsp; 2.3.1&xbsp; 高斯接触模型
&xbsp;&xbsp;&xbsp; 2.3.2&xbsp; 高斯型方位误差模型
&xbsp;&xbsp;&xbsp; 2.3.3&xbsp; 混合方位和接触的测量
&xbsp;&xbsp;&xbsp; 2.3.4&xbsp; 目标否定的信息
&xbsp;&xbsp;&xbsp; 2.3.5&xbsp; 确定的信息
&xbsp;&xbsp;&xbsp; 2.3.6&xbsp; 雷达和红外检测
&xbsp;&xbsp;&xbsp; 2.3.7&xbsp; 信号-加-噪声模型
&xbsp;&xbsp;&xbsp; 2.3.8&xbsp; 小结
&xbsp; 参考文献
第3章&xbsp; 单目标跟踪
&xbsp; 3.1&xbsp; 贝叶斯滤波
&xbsp;&xbsp;&xbsp; 3.1.1&xbsp; 递归贝叶斯滤波
&xbsp;&xbsp;&xbsp; 3.1.2&xbsp; 预测和平滑
&xbsp;&xbsp;&xbsp; 3.1.3&xbsp; 递归预测
&xbsp;&xbsp;&xbsp; 3.1.4&xbsp; 递归平滑
&xbsp;&xbsp;&xbsp; 3.1.5&xbsp; 批处理平滑
&xbsp;&xbsp;&xbsp; 3.1.6&xbsp; 陆地规避
&xbsp; 3.2&xbsp; 卡尔曼滤波
&xbsp;&xbsp;&xbsp; 3.2.1&xbsp; 离散卡尔曼滤波
&xbsp;&xbsp;&xbsp; 3.2.2&xbsp; 连续-离散卡尔曼滤波
&xbsp;&xbsp;&xbsp; 3.2.3&xbsp; 卡尔曼平滑
&xbsp; 3.3&xbsp; 非线性滤波的粒子滤波实现
&xbsp;&xbsp;&xbsp; 3.3.1&xbsp; 粒子生成
&xbsp;&xbsp;&xbsp; 3.3.2&xbsp; 粒子滤波递归
&xbsp;&xbsp;&xbsp; 3.3.3&xbsp; 再采样
&xbsp;&xbsp;&xbsp; 3.3.4&xbsp; 扰动目标状态
&xbsp;&xbsp;&xbsp; 3.3.5&xbsp; 收敛性
&xbsp;&xbsp;&xbsp; 3.3.6&xbsp; 奇异子
&xbsp;&xbsp;&xbsp; 3.3.7&xbsp; 多运动模型
&xbsp;&xbsp;&xbsp; 3.3.8&xbsp; 高维状态空间
&xbsp; 3.4&xbsp; 小结
&xbsp; 参考文献
第4章&xbsp; 经典多目标跟踪
&xbsp; 4.1&xbsp; 多目标跟踪
&xbsp;&xbsp;&xbsp; 4.1.1&xbsp; 多目标运动模型
&xbsp;&xbsp;&xbsp; 4.1.2&xbsp; 多目标似然函数
&xbsp;&xbsp;&xbsp; 4.1.3&xbsp; 多目标贝叶斯递归
&xbsp; 4.2&xbsp; 多假设跟踪
&xbsp;&xbsp;&xbsp; 4.2.1&xbsp; 接触
&xbsp;&xbsp;&xbsp; 4.2.2&xbsp; 扫描
&xbsp;&xbsp;&xbsp; 4.2.3&xbsp; 数据关联假设
&xbsp;&xbsp;&xbsp; 4.2.4&xbsp; 扫描和扫描关联假设
&xbsp;&xbsp;&xbsp; 4.2.5&xbsp; 多假设跟踪分解
&xbsp; 4.3&xbsp; du立多假设跟踪
&xbsp;&xbsp;&xbsp; 4.3.1&xbsp; 条件du立关联似然函数
&xbsp;&xbsp;&xbsp; 4.3.2&xbsp; 扫描关联似然函数例子
&xbsp;&xbsp;&xbsp; 4.3.3&xbsp; du立定理
&xbsp;&xbsp;&xbsp; 4.3.4&xbsp; du立MHT递归
&xbsp; 4.4&xbsp; 线性-高斯多假设跟踪
&xbsp;&xbsp;&xbsp; 4.4.1&xbsp; 线性-高斯情况下的MHT递归
&xbsp;&xbsp;&xbsp; 4.4.2&xbsp; 后验分布和关联概率
&xbsp; 4.5&xbsp; 非线性联合概率数据关联
&xbsp;&xbsp;&xbsp; 4.5.1&xbsp; 扫描关联假设
&xbsp;&xbsp;&xbsp; 4.5.2&xbsp; 扫描关联概率
&xbsp;&xbsp;&xbsp; 4.5.3&xbsp; JPDA后验
&xbsp;&xbsp;&xbsp; 4.5.4&xbsp; 允许新目标出现和删除存在目标
&xbsp;&xbsp;&xbsp; 4.5.5&xbsp; 粒子滤波实现
&xbsp;&xbsp;&xbsp; 4.5.6&xbsp; 例子
&xbsp; 4.6&xbsp; 概率多假设跟踪
&xbsp;&xbsp;&xbsp; 4.6.1&xbsp; PMHT假设
&xbsp;&xbsp;&xbsp; 4.6.2&xbsp; 关联上的后验分布
&xbsp;&xbsp;&xbsp; 4.6.3&xbsp; 期望的醉大化
&xbsp;&xbsp;&xbsp; 4.6.4&xbsp; 非线性PMlHT
&xbsp;&xbsp;&xbsp; 4.6.5&xbsp; 线性-高斯PMHT
&xbsp;&xbsp;&xbsp; 4.6.6&xbsp; 式(4.81)的证明
&xbsp; 4.7&xbsp; 小结
&xbsp; 4.8&xbsp; 说明
&xbsp; 参考文献
第5章&xbsp; 多目标强度滤波
&xbsp; 5.1&xbsp; 多目标状态的点过程模型
&xbsp;&xbsp;&xbsp; 5.1.1&xbsp; PPP的基本属性
&xbsp;&xbsp;&xbsp; 5.1.2&xbsp; PPP的概率分布函数
&xbsp;&xbsp;&xbsp; 5.1.3&xbsp; 点过程的叠加
&xbsp;&xbsp;&x 贝叶斯多目标跟踪-(第2版) 电子书 下载 mobi epub pdf txt
贝叶斯多目标跟踪-(第2版) pdf epub mobi txt 电子书 下载