內容簡介
This volume covers approximately the amount of point-set topology that a student who does not intend to specialize in the field should nevertheless know.This is not a whole lot, and in condensed form would occupy perhaps only a small booklet. Our aim, however, was not economy of words, but a lively presentation of the ideas involved, an appeal to intuition in both the immediate and the higher meanings.
內頁插圖
目錄
Introduction
1.what is point-set topology about?
2.origin and beginnings
Chapter Ⅰ fundamental concepts
1.the concept of a topological space
2.metric spaces
3.subspaces, disjoint unions and products
4.rases and subbases
5.continuous maps
6.connectedness
7.the hausdorff separation axiom
8.compactness
Chapter Ⅱ topological vector spaces
1.the notion of a topological vector space
2.finite-dimensional vector spaces
3.hilbert spaces
4.banach spaces
5.frechet spaces
6.locally convex topological vector spaces
7.a couple of examples
Chapter Ⅲ the quotient topology
1.the notion of a quotient space
2.quotients and maps
3.properties of quotient spaces
4.examples: homogeneous spaces
5.examples: orbit spaces
6.examples: collapsing a subspace to a point
7.examples: gluing topological spaces together
Chapter Ⅳ completion of metric spaces
1.the completion of a metric space
2.completion of a map
3.completion of normed spaces
Chapter Ⅴ homotopy
1.homotopic maps
2.homotopy equivalence
3.examples
4.categories
5.functors
6.what is algebraic topology?
7.homotopy--what for?
Chapter Ⅵ the two countability axioms
1.first and second countability axioms
2.infinite products
3.the role of the countability axioms
Chapter Ⅶ cw-complexes
1.simplicial complexes
2.cell decompositions
3.the notion of a cw-complex
4.subcomplexes
5.cell attaching
6.why cw-complexes are more flexible
7.yes, but...?
Chapter Ⅷ construction of continuous functions on topological spaces
1.the urysohn lemma
2.the proof of the urysohn lemma
3.the tietze extension lemma
4.partitions of unity and vector bundle sections
5.paracompactness
Chapter Ⅸ covering spaces
1.topological spaces over x
2.the concept of a covering space
3.path lifting
4.introduction to the classification of covering spaces
5.fundamental group and lifting behavior
6.the classification of covering spaces
7.covering transformations and universal cover
8.the role of covering spaces in mathematics
Chapter Ⅹ the theorem of tychonoff
1.an unlikely theorem?
2.what is it good for?
3.the proof
last Chapter
set theory (by theodor br6cker)
references
table of symbols
index
前言/序言
拓撲學 [Topology] 下載 mobi epub pdf txt 電子書
評分
☆☆☆☆☆
經典教材,值得購買哦哦。
評分
☆☆☆☆☆
寫法獨特, 很好的教材
評分
☆☆☆☆☆
就筆者所知,原書作者Klaus Jaenich寫過一本著名的微分拓撲方麵的教材(原文為德文,後由劍橋大學齣版社齣版瞭英文版),還寫瞭好幾本風格類似的教科書,包括綫性代數、復分析、嚮量分析,但好像都沒有英文版的。
評分
☆☆☆☆☆
真的是好書,推薦給大傢
評分
☆☆☆☆☆
書很不錯,物流速度也很快。
評分
☆☆☆☆☆
英文譯本,翻瞭幾頁能讀下去
評分
☆☆☆☆☆
The book I've surveyed which includes Janich's Intro to Differential Topology, Isham's Differential Geometry for Physicists, Differential Manifold by Serge Lang, Introduction to Manifolds by Tu L.W. unfortunately all reads like books written by mathematicians for mathematicians and has a dearth of physical examples and visual aids. Tu L.W.'s Intro to Manifold is surprisingly soft handed and perhaps would be good for a first book. The book nonetheless lacks motivating examples and il
評分
☆☆☆☆☆
2 Combinatorial Rigidity, Jack Graver, Brigitte Servatius, Herman Servatius (1993, ISBN 978-0-8218-3801-3)
評分
☆☆☆☆☆
學習數學基礎,溫故而知新