多项式和多项式不等式 pdf epub mobi txt 电子书 下载 2024

图书介绍


多项式和多项式不等式

简体网页||繁体网页
[加] 博尔维恩 著



点击这里下载
    


想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-06

类似图书 点击查看全场最低价

出版社: 世界图书出版公司
ISBN:9787510037573
版次:1
商品编码:10914305
包装:平装
开本:24开
出版时间:2011-07-01
页数:480

多项式和多项式不等式 epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

相关图书



多项式和多项式不等式 epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

多项式和多项式不等式 pdf epub mobi txt 电子书 下载



具体描述

内容简介

《多项式和多项式不等式》是数学研究生教材(gtm)第161卷,主要介绍多项式和有理函数,重点论述代数多项式和三角多项式的特性,同时也介绍了多项式几何、正交多项式、切比雪夫和马可夫系、müntz系和müntz-type型稠密性定理,以及不等式用于多项式和有理函数等理论。其中有些内容较同类图书更加全面。目次:导论和基本特性;特殊多项式;切比雪夫和笛卡儿系;稠密性问题;基本不等式;müntz空间中的不等式;有理函数空间中的不等式。

目录

preface
chapter 1 introduction and basic properties
1.1 polynomials and rational functions
1.2 the fundamental theorem of algebra
1.3 zeros of the derivative

chapter 2 some special polynomials
2.1 chebyshev polynomials
2.2 orthogonal functions
2.3 orthogonal polynomials
2.4 polynomials with nonnegative coefficients

chapter 3 chebyshev and descartes systems
3.1 chebyshev systems
3.2 descartes systems
3.3 chebyshev polynomials in chebyshev spaces
3.4 miintz-legendre polynomials
3.5 chebyshev polynomials in rational spaces

chapter 4 denseness questions
4.1 variations on the weierstrass theorem
4.2 miintz's theorem 4.3 unbounded bernstein inequalities
4.4 miintz rationals

chapter 5 basic inequalities
5.1 classical polynomial inequalities
5.2 markov's inequality for higher derivatives
5.3 inequalities for norms of factors

chapter 6 inequalities in muntz spaces
6.1 inequalities in mfintz spaces
6.2 nondense miintz spaces

chapter 7 inequalities for rational function spaces
7.1 inequalities for rational function spaces
7.2 inequalities for logarithmic derivatives
appendix a1 algorithms and computational concerns
appendix a2 orthogonality and irrationality
appendix a3 an interpolation theorem
appendix a4 inequalities for generalized polynomials in lp
appendix a5 inequalities for polynomials with constraints
bibliography
notation
index

前言/序言



多项式和多项式不等式 电子书 下载 mobi epub pdf txt

多项式和多项式不等式 pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

好书,值得拥有,物美价廉。读书有益。

评分

不错不错不错不错不错

评分

不错不错不错不错不错

评分

若 ƒ(x)和g(x)是F[x]中的两个多项式,且 g(x)≠0,则在F[x]中有唯一的多项式 q(x)和r(x),满足ƒ(x)=q(x)g(x)+r(x),其中r(x)的次数小于g(x)的次数。此时q(x) 称为g(x)除ƒ(x)的商式,r(x)称为余式。当g(x)=x-α时,则r(x)=ƒ(α)称为余元,式中的α是F的元素。此时带余除法具有形式ƒ(x)=q(x)(x-α)+ƒ(α),称为余元定理。g(x)是ƒ(x)的因式的充分必要条件是g(x)除ƒ(x)所得余式等于零。如果g(x)是ƒ(x)的因式,那么也称g(x) 能整除ƒ(x),或ƒ(x)能被g(x)整除。特别地,x-α是ƒ(x)的因式的充分必要条件是ƒ(α)=0,这时称α是ƒ(x)的一个根。

评分

好评。。。。。。

评分

评分

加法与乘法

评分

有限个单项式之和称为多元多项式,简称多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。

评分

带余除法

类似图书 点击查看全场最低价

多项式和多项式不等式 pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


多项式和多项式不等式 bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 windowsfront.com All Rights Reserved. 静流书站 版权所有