编辑推荐
本系列丛书搜集的是世界各国各历史时期的初等数学经典。大多兼有数学教育史史料研究及弥补当前初等数学教材不系统、缺深度、少背景介绍等缺陷之功能。冯克勤所著的《平方和》为其中一册,共分四章及附录:《数论经典著作系列:平方和》介绍有关代数数论的几段很不简单的数学史,以及数学思想和解题方法。
内容简介
《平方和》共分四章及附录:第一章整数平方和——能表示吗?第二章再谈整数平方和——有多少种表示法?第三章-1是平方和吗?第四章多项式平方和。《平方和》适合于高等院校师生及相关专业研究人员、数学奥林匹克竞赛选手和教练员以及数学爱好者。
作者简介
冯克勤,1941年生,1968年研究生毕业于中国科学技术大学数学系;1973年至2000年在中国科学技术大学数学系和研究生院任教,2000年后到清华大学数学系工作。
主要从事代数数论和代数编码理论研究,出版了《分圆函数域》、《代数数论简史》等专著,《整数与多项式》、《交换代数基础》、《代数数论》、《代数与通信》等大学生和研究生教材:主编的《走向数学》丛书曾获中国图书奖。
目录
第一章 整数平方和——能表示吗?
1.1 二平方和——高斯定理
1.2 四平方和——兼谈域和四元数体
1.3 二元二次型
1.4 三平方和
第二章 再谈整数平方和——有多少种表示法?
2.1 θ,q0,q1,q2和q3
2.2 雅可比恒等式
2.3 r2(n)计算公式
2.4 r4(n)计算公式
2.5 再证r2(n)公式——兼谈高斯整数环
幕间休息——漫谈代数数论
第三章 -1是平方和吗?
3.1 -1就是一切
3.2 全正元素是平方和
3.3 -1是几个数的平方和——虚二次域情形
3.4 s(F)=2n(费斯特定理)
第四章 多项式平方和
4.1 历史的回顾
4.2 多项式平方和——肯定性和否定性结果
4.3 构作s(F)=2k的域
4.4 进一步的结果和未解决的问题
附录 一点初等数论
编辑手记
前言/序言
平方和 电子书 下载 mobi epub pdf txt
评分
☆☆☆☆☆
2,集代数、Sigma-代数、集类生成的Sigma-代数、可测空间、Borel集、集环、集半环、Sigma-环、Borel Sigma-代数、可加测度、可数可加测度、测度、Borel测度、概率测度、概率空间、可数可加性的判据、紧类、逼近类、具有逼近紧类的测度的可数可加性、Lebesgue测度。
评分
☆☆☆☆☆
12,将Sturm-Liouville问题归结为积分算子本征函数问题、双曲方程混合问题解的存在性、Laplace方程第一边值问题的Green函数、Green函数的对称性、Poisson公式、Harnack不等式。
评分
☆☆☆☆☆
2,导数的先验估计、调和函数的解析性、解析延拓定理、Liouville定理、Phragmen-Lindelof定理。
评分
☆☆☆☆☆
1,偏微分方程学科的发展、数学物理方程的导出、第一边值问题、第二边值问题、Dirichlet问题、第三边值问题。
评分
☆☆☆☆☆
3,Dirichlet外问题、Dirichlet内问题、Neumann外问题、Neumann内问题、可去奇点定理、调和函数在无穷远邻域中的性质、广义调和函数与调和函数的关系、Weyl引理。
评分
☆☆☆☆☆
5,Caratheodory外测度、正则外测度、任意Borel集m-可测的充要条件。
评分
☆☆☆☆☆
9,Morrey不等式、Sobolev不等式、Rellich-Kondrachov定理、Poincare不等式、广义解、基本解。
评分
☆☆☆☆☆
6,波动方程混合问题解的唯一性、波动方程混合问题解的稳定性、Holder不等式、Friedrichs不等式。
评分
☆☆☆☆☆
6,波动方程混合问题解的唯一性、波动方程混合问题解的稳定性、Holder不等式、Friedrichs不等式。