内容简介
《李理论与表示论(英文版)》包含华东师范大学2009年及2006年“李理论与表示论”研究生暑期学校的4篇讲义。内容包括李超代数表示论的一些新的发展;有限群概型的几何与组合方面的理论;简约代数群及相关Frobenius核、李型有限群的上同调理论与相互关联;D-模理论在李理论中的应用等。各作者对相应的专题进行了比较详尽和透彻的叙述,并辅以例子和练习。《李理论与表示论(英文版)》为从事李理论与表示论研究的学生及相关研究人员很好的参考资料。
目录
Shun-Jen Cheng and Weiqiang Wang: Dualities for Lie Superalgebras
0 Introduction
1 Lie superalgebra ABC
2 Finite-dimensional modules of Lie superalgebras
3 Schur-Sergeev duality
4 Howe duality for Lie superalgebras of type
5 Howe duality for Lie superalgebras of type
6 Super duality
References
Rolf Farnsteiner: Combinatorial and Geometric Aspects of the
Representation Theory of Finite Group Schemes
0 Introduction
1 Finite group schemes
2 Complexity and representation type
3 Support varieties and support spaces
4 Varieties of tori
5 Quivers and path algebras
6 Representation-finite and tame group schemes
References
Daniel K. Nakano : Cohomology of Algebraic Groups, Finite Groups, and Lie Algebras: Interactions and Connections
1 Overview
2 Representation theory
3 Homological algebra
4 Relating support varieties
5 Relating cohomology
6 Computing cohomology for finite groups of Lie type
References
Toshiyuki Tanisaki: D-modules and Representation Theory
1 Motivation
2 Basic concepts
李理论与表示论(英文版) 电子书 下载 mobi epub pdf txt
评分
☆☆☆☆☆
《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书
评分
☆☆☆☆☆
想有一本几何专题的书 好好学习
评分
☆☆☆☆☆
运输途中磕磕碰碰失望透顶
评分
☆☆☆☆☆
精装书不错,但是价钱贵。
评分
☆☆☆☆☆
还不错。就是价格变化快,好书。希望看看能有帮助。
评分
☆☆☆☆☆
据说GSM将会印全套,就像GTM一样慢慢地全有了
评分
☆☆☆☆☆
Good
评分
☆☆☆☆☆
合并同类项很不错的老师德艺双馨
评分
☆☆☆☆☆
正版的,非常值,快递也给力,必须给好评,就是感觉包装有点简陋啊哈哈不过书很好,看了下内容也都很不错,快递也很给力,东西很好物流速度也很快,和照片描述的也一样,给个满分吧下次还会来买。代数几何是数学的一个分支,正如它的名字所暗示的,代数几何将抽象代数, 特别是交换代数,同几何结合起来。 它可以被认为是对代数方程系统的解集的研究。代数几何以代数簇为研究对象。代数簇是由空间坐标的一个或多个代数方程所确定的点的轨迹。例如,三维空间中的代数簇就是代数曲线与代数曲面。代数几何研究一般代数曲线与代数曲面的几何性质。在多复变函数论、拓扑学、微分方程论和数论中都有应用。现代数学的一个重要分支学科。它的基本研究对象是在任意维数的(仿射或射影)空间中,由若干个代数方程的公共零点所构成的集合的几何特性。这样的集合通常叫做代数簇,而这些方程叫做这个代数簇的定义方程组。代数几何是数学的一个分支,代数几何是将抽象代数, 特别是交换代数,同几何结合起来。 它可以被认为是对代数方程系统的解集的研究。代数几何以代数簇为研究对象。代数簇是由空间坐标的一个或多个代数方程所确定的点的轨迹。例如,三维空间中的代数簇就是代数曲线与代数曲面。代数几何研究一般代数曲线与代数曲面的几何性质。在多复变函数论、拓扑学、微分方程论和数论中都有应用。