<p>
评分书本保护的很好,内容是正版。
评分不错不错,正版的,值得购买
评分出版著作38部,发表教学研究论文22篇,译著(合译)6部。他编写的具有代表性的优秀教材有:《高等代数(上、下册)——大学高等代数课程创新教材》(清华大学出版社,2010),《高等代数(第二版)(上、下册)》(高等教育出版社,2003),《简明线性代数》(北京大学出版社,2002),《解析几何(第二版)》(北京大学出版社,1996),《抽象代数基础》(高等教育出版社,2003),《有限群和紧群的表示论》(北京大学出版社,1997)等。
评分《有限群表示论(第2版)》旨在介绍有限群的表示理论,其中包括群表示论的基本概念与两条主要研究途径的介绍。书的前八章介绍有限群的常表示理论(即在特征数不整除群的阶数的域上的表示,具有完全可约性),着重论述了与群的诱导表示有关的一些经典结果,同时也探讨了域的选取与群表示分解之间的关系。后四章介绍有限群模表示的Brauer理论(即在特征数整除群的阶数的域上的表示,一般不具备完全可约性),该理论通过p模系统将有限群G在特征零域上的表示理论与特征p(这里pG)域上的表示理论联系起来;也将G在特征零域上的特征标理论与G的p局部结构联系起来。《有限群表示论(第2版)》为求自成系统,在第一章用较大篇幅简要地叙述了与群表示论有关的一些预备知识,特别是介绍了有限维代数的结构与表示理论。《有限群表示论(第2版)》每节后都附有足够多的习题帮助读者理解与拓广正文的内容。这套丛书还有 《偏微分方程》,《可靠性数学引论》,《矩阵计算六讲》,《复变函数专题选讲》,《应用偏微分方程讲义》 等。《群表示论》是作者在北京国际数学研究中心给数学基础强化班授课讲稿的基础上,结合在北京大学数学科学学院多次讲授群表示论课的心得体会编写而成,主要内容包括:有限群在特征不能整除群的阶的域上的线性表示、无限群在复(实)数域上的有限维和无限维线性表示等。《群表示论》紧紧抓住群表示论的主线——研究群的不可约表示,首先提出要研究的问题,探索如何解决问题,把深奥的群表示论知识讲得自然、清晰、易懂。在阐述无限群的线性表示理论时,本书介绍了数学上处理无限问题的典型方法,并且对于需要的拓扑学、实(复)分析以及泛函分析的知识作了详尽介绍。本书在绝大多数章节中都配有习题,并且在书末附有习题解答。
评分《数学的思维方式与创新》是作者在北京大学多次给本科生讲授“数学的思维方式与创新”素质教育通选课的教材.什么是数学的思维方式?如何培养学生的数学思维能力?数学的思维方式包括哪几个环节?作者用通俗易懂的语言论述了数学思维方式的五个重要环节:观察一抽象一探索一猜测一论证。讲述了数学上的创新是如何推动数学的发展,而数学的思维方式在创新中是怎样起着重要作用的,使学生领略数学创新的风采,受到数学思维方式与创新的熏陶和训练,提高数学素质。
评分《数学的思维方式与创新》以现代数学和信息时代有重要应用的数学知识和数学发展史上若干重要创新为载体,从同学们熟悉的整数、多项式出发,讲述整数环、一元多项式环的结构;从“星期”这一司空见惯的现象引出集合的划分、等价关系和模块剩余类的概念,进而研究模m剩余类环的结构;从信息时代为了确保信息安全引出序列密码和公开密钥密码,以及数字签名;从数学发展史上选出三个重大创新进行阐述,它们是:从对运动的研究到微积分的创立和严密化,从平行公设到非欧几里得几何的诞生与实现;从方程的根式可解问题到伽罗瓦理论的创立和代数学的变革。全书共分四章,第一、二、三章每节配置了习题,书末给出了习题解答,供教师和学生参考。
评分《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。《解析几何》可作为综合性大学和师范类大学数学系、物理系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书。系等相关学科的教材,对于那些对几何学有兴趣的大学生和其他读者也是一本适宜的课外读物或参考书
评分很好的书,值得一读。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 windowsfront.com All Rights Reserved. 静流书站 版权所有