具体描述
内容简介
《复变函数及应用(英文版)(第8版)》初版于20世纪40年代,是经典的本科数学教材之一,对复变函数的教学影响深远,被美国加州理工学院、加州大学伯克利分校、佐治亚理工学院、普度大学、达特茅斯学院、南加州大学等众多名校采用。
《复变函数及应用(英文版)(第8版)》阐述了复变函数的理论及应用,还介绍了留数及保形映射理论在物理、流体及热传导等边值问题中的应用。
新版对原有内容进行了重新组织,增加了更现代的示例和应用,更加方便教学。 作者简介
James Ward Brown密歇根大学迪尔本分校数学系教授,美国数学学会会员。1964年于密歇根大学获得数学博士学位。他曾经主持研究美国国家自然科学基金项目,获得过密歇根大学杰出教师奖,并被列入美国名人录。
Ruel V.Churchill已故密歇根大学知名教授。早在60多年前,就开始编写一系列经典教材。除本书外,还与James Ward Brown合著《Fourier Series and Boundary Value Problems》。 目录
Preface
1 Complex Numbers
Sums and Products
Basic Algebraic Properties
Further Properties
Vectors and Moduli
Complex Conjugates
Exponential Form
Products and Powers in Exponential Form
Arguments of Products and Quotients
Roots of Complex Numbers
Examples
Regions in the Complex Plane
2 Analytic Functions
Functions of a Complex Variable
Mappings
Mappings by the Exponential Function
Limits
Theorems on Limits
Limits Involving the Point at Infinity
Continuity
Derivatives
Differentiation Formulas
Cauchy-Riemann Equations
Sufficient Conditions for Differentiability
Polar Coordinates
Analytic Functions
Examples
Harmonic Functions
Uniquely Determined Analytic Functions
Reflection Principle
3 Elementary Functions
The Exponential Function
The Logarithmic Function
Branches and Derivatives of Logarithms
Some Identities Involving Logarithms
Complex Exponents
Trigonometric Functions
Hyperbolic Functions
Inverse Trigonometric and Hyperbolic Functions
4 Integrals
Derivatives of Functions w(t)
Definite Integrals of Functions w(t)
Contours
Contour Integrals
Some Examples
Examples with Branch Cuts
Upper Bounds for Moduli of Contour Integrals
Antiderivatives
Proof of the Theorem
Cauchy-Goursat Theorem
Proof of-the Theorem
Simply Connected Domains
Multiply Connected Domains
Cauchy Integral Formula
An Extension of the Cauchy Integral Formula
Some Consequences of the Extension
Liouvilles Theorem and the Fundamental Theorem of Algebra
Maximum Modulus Principle
5 Series
Convergence of Sequences
Convergence of Series
Taylor Series
ProofofTaylors Theorem
Examples
Laurent Series
ProofofLaurents 111eorem
Examples
Absolute and Uniform Convergence of Power Series
Continuity of Sums of Power Series
Integration and Differentiation ofPower Series
Uniqueness of Series Representations
Multiplication and Division of Power Series
6 Residues and Poles
Isolated Singular Poims
Residues
Cauchys Residue Theorem
Residue at Infinity
The Three Types of Isolated Singular Points
ResiduCS at POles
Examples
Zeros of Analytic Functions
Zeros and Poles
Behavior of Functions Near Isolated Singular Points
7 Applications of Residues
Evaluation of Improper Integrals
Example
Improper Integrals from Fourier Analysis
Jordans Lemma
Indented Paths
An Indentation Around a Branch P0int
Integration Along a Branch Cut
Definite Integrals Involving Sines and Cosines
Argument Principle
Rouch6s Theorem
Inverse Laplace Transforms
Examples
8 Mapping by Elementary Functions
Linear Transformations
The TransfoITnation w=1/Z
Mappings by 1/Z
Linear Fractional Transformations
An Implicit Form
Mappings ofthe Upper HalfPlane
The Transformation w=sinZ
Mappings by z2 and Branches of z1/2
Square Roots of Polynomials
Riemann Surfaces
Surfaces forRelatedFuncfions
9 Conformal Mapping
10 Applications of Conformal Mapping
11 The Schwarz-Chrstoffer Transformation
12 Integral Formulas of the Poisson Type
Appendixes
Index 精彩书摘
The first objective of.the book is to develop those parts of the theory that areprominent in applications of the subject. The second objective is to furnish an intro-duction to applications of residues and conformal mapping. With regard to residues,special emphasis is given to their use in evaluating real improper integrals, findinginverse Laplace transforms, and locating zeros of functions. As for conformal map-ping, considerable attention is paid to its use in solving boundary value problemsthat arise in studies of heat conduction and fluid flow. Hence the book may beconsidered as a companion volume to the authors text "Fourier Series and Bound-ary Value Problems," where another classical method for solving boundary valueproblems in partial differential equations is developed.
The first nine chapters of this book have for many years formed the basis of athree-hour course given each term at The University of Michigan. The classes haveconsisted mainly of seniors and graduate students concentrating in mathematics,engineering, or one of the physical sciences. Before taking the course, the studentshave completed at least a three-term calculus sequence and a first course in ordinarydifferential equations. Much of the material in the book need not be covered in thelectures and can be left for self-study or used for reference. 前言/序言
This book is a revision of the seventh edition, which was published in 2004. Thatedition has served, just as the earlier ones did, as a textbook for a oneterm introductory course in the theory and application of functions of a complex variable.This new edition preserves the basic content and style of the earlier editions, thefirst two of which were written by the late Ruel V. Churchill alone.
The first objective of.the book is to develop those parts of the theory that areprominent in applications of the subject. The second objective is to furnish an introduction to applications of residues and conformal mapping. With regard to residues,special emphasis is given to their use in evaluating real improper integrals, findinginverse Laplace transforms, and locating zeros of functions. As for conformal mapping, considerable attention is paid to its use in solving boundary value problemsthat arise in studies of heat conduction and fluid flow. Hence the book may beconsidered as a companion volume to the authors text "Fourier Series and Boundary Value Problems," where another classical method for solving boundary valueproblems in partial differential equations is developed.
The first nine chapters of this book have for many years formed the basis of athreehour course given each term at The University of Michigan. The classes haveconsisted mainly of seniors and graduate students concentrating in mathematics,engineering, or one of the physical sciences. Before taking the course, the studentshave completed at least a threeterm calculus sequence and a first course in ordinarydifferential equations. Much of the material in the book need not be covered in thelectures and can be left for selfstudy or used for reference. If mapping by elementaryfunctions is desired earlier in the course, one can skip to Chap. 8 immediately afterChap. 3 on elementary functions.
好的,这是一份不涉及《复变函数及应用(英文版)(第8版)》内容的图书简介,字数控制在1500字左右。 --- 《经典力学导论:拉格朗日与哈密顿体系基础》 作者: 约瑟夫·S·麦肯齐 (Joseph S. MacKenzie) 译者: [此处可留空或填写译者姓名] 出版社: 环球科学出版社 出版日期: 2023年10月 图书简介: 本书旨在为物理学、工程学及相关领域的本科高年级学生和研究生提供一个扎实、系统且富有洞察力的经典力学入门。它超越了牛顿力学的基本表述,深入探讨了更具普适性和优雅性的拉格朗日和哈密顿力学框架。作为一本现代经典力学教材,本书的独特之处在于其对理论推导的严谨性与对物理图像直观理解的并重,尤其侧重于如何利用这些先进的变分原理方法来解决复杂的动力学问题。 第一部分:从牛顿到拉格朗日——变分原理的基石 本书伊始,我们首先回顾了牛顿力学的核心思想与局限性,为引入更宏大的理论框架奠定基础。第一章着重介绍了约束系统的概念,并详细阐述了虚拟位移和虚功原理,这是理解变分原理的关键跳板。随后,第二章系统地引入了欧拉-拉格朗日方程。我们不仅详细推导了这一核心方程,还通过大量具体案例,如简谐振子、系链和滚动的圆盘,展示了其在处理复杂约束问题时的巨大威力。本章特别强调了守恒量的概念,以及诺特定理(Noether's Theorem)在理论物理中的深刻意义,尽管诺特定理的完整讨论将在后续章节中深化。 第三章专注于守恒定律的深入探讨。我们通过解析力学的视角,重新审视动量、角动量和能量的守恒,并探讨了这些守恒量在约束系统下的表现。本章引入了正则坐标和广义动量,为过渡到哈密顿力学做好了准备。 第二部分:哈密顿力学的优雅结构 第四章是全书的转折点,聚焦于哈密顿力学的构建。我们从拉格朗日量出发,通过勒让德变换,系统地导出了哈密顿量。本章详细讨论了哈密顿方程的结构,并阐明了哈密顿函数在相空间中的几何意义。相空间的几何描述,如相轨迹和相流的概念,被清晰地引入,帮助读者建立起对动力学演化的直观感受。 第五章深入探讨了正则变换理论。我们介绍了一系列生成函数,并详细推导了保持哈密顿方程形式不变的正则变换的条件。本章通过实例说明了如何利用正则变换简化问题,例如如何通过选择合适的坐标系,将复杂的系统转化为可积的简单系统。泊松括号的概念也在本章中被引入,它不仅是检验正则性的工具,更是连接经典力学与量子力学的重要桥梁。 第六章将泊松括号的概念提升至更高维度。我们探讨了泊松括号的代数性质,并展示了它如何优雅地描述物理量随时间的演化。时间演化方程的泊松括号形式被清晰阐述,并与牛顿力学中的演化方程进行了对比,突显了哈密顿形式的内在一致性。 第三部分:进阶主题与理论应用 第七章回归并强化了诺特定理的讨论,将其置于哈密顿框架下进行考察。本章详细证明了由对称性(时间平移、空间平移和空间旋转)所产生的守恒量,是通过泊松括号的零值关系来体现的。这部分内容对于理解物理学中的基本守恒律至关重要。 第八章聚焦于可积性问题。我们引入了刘维尔-阿诺德(Liouville-Arnold)定理,探讨了在有限自由度系统中,当存在足够多相互独立的守恒量时,系统轨线可以被限制在环面上的情况。本章提供了可积系统的经典例子,如三维谐振子,帮助读者理解复杂系统的简化可能性。 第九章将理论应用于波动与场论的边缘。虽然本书主要集中于质点动力学,但本章简要介绍了最小作用量原理在连续介质和经典场论中的推广,例如弹性波的拉格朗日描述,为学生向更高级的场论学习做铺垫。 第十章是对理论工具的综合应用与展望。本章通过一系列具有挑战性的综合性习题和案例分析(如陀螺仪的进动、受迫振动的拉格朗日分析),巩固读者对前九章所学知识的掌握。最后,本书对经典力学与量子力学(特别是薛定谔方程的经典极限)之间的深刻联系进行了简要而有力的展望。 本书特色: 1. 深度与广度兼顾: 平衡了对变分原理的数学严谨推导与对物理图像的清晰阐释。 2. 强调结构美感: 特别突出了哈密顿力学的内在对称性和泊松括号的代数结构。 3. 丰富的例题与习题: 每章末尾均附有难度分级的习题,旨在培养读者利用高级框架解决实际问题的能力。 4. 现代视角: 将经典理论置于现代物理学的背景下进行审视,为进一步学习统计力学和量子场论打下坚实基础。 《经典力学导论:拉格朗日与哈密顿体系基础》不仅是一本教科书,更是一扇通往理论物理核心思想的门户,它将引导读者以一种更深刻、更优雅的方式理解物质世界的运动规律。