编辑推荐
心,是人体的君王,统领一切。它既掌控着物质属性的心脏,又掌控着精神属性的心灵。心不仅主宰着人的喜怒哀乐,也主宰着人的疾病与健康,甚至主宰着人的命运。
病由心生。疾病,源头上说是心病。
病,人生遇到的一切不愉快事情,都可以说是病。身体上的不舒服固然是病,心理上的不愉快也可以是病,道德素质恶劣可以是病,人际交往中的挫折和失败都可以是病。
心灵治愈术
静心,让心灵回归宁静,要领是尽量做到没有杂念,通过静坐减少杂念,借助睡眠扫除杂念。
观想,集中心念观想某一对象,激发内心的精神力量,保持心灵的开放性,让每一个念头都成为良药。
正见,就是活在当下,把注意力集中在当下,不想过去,也不想未来。过去的是烦恼,未来的是妄想,都是虚幻的;我们能把握的,只有当下,当下才是实实在在的。
内容简介
《心灵能量》一书,以心为起点,将七情、五行性格与心肝脾肺肾五大系统疾病的对应关系作了深入细致地分析,以生活化的案例向我们证明了这样一个道理:养生不只是养身,更重要的是养心。心生百病,同样心也能治百病。心是好的药。
总之,这是一本放大心灵能量,教会你心灵治愈,重拾生命真谛的心灵励志书。
目录
Historical Introduction
Chapter 1
The Fundamental Theorem of Arithmetic
1.1 Introduction
1.2 Divisibility
1.3 Greatest common divisor
1.4 Prime numbers
1.5 The fundamental theorem of arithmetic
1.6 The series of reciprocals of the primes
1.7 The Euclidean algorithm
1.8 The greatest common divisor of more than two, numbers
Exercises for Chapter 1
Chapter 2
Arithmetical Functions and Dirichlet Multiplication
2.1 Introduction
2.2 The M6bius function (n)
2.3 The Euler totient function (n)
2.4 A relation connecting and u
2.5 A product formula for (n)
2.6 The Dirichlet product of arithmetical functions
2.7 Dirichlet inverses and the M6bius inversion formula
2.8 The Mangoldt function A(n)
2.9 Muitiplicative functions
2.10 Multiplicative functions and Dirichlet multiplication
2.11 The inverse of a completely multiplicative function
2.12 Liouville's function)
2.13 The divisor functions a,(n)
2.14 Generalized convolutions
2.15 Formal power series
2.16 The Bell series of an arithmetical function
2.17 Bell series and Dirichlet multiplication
2.18 Derivatives of arithmetical functions
2.19 The Selberg identity
Exercises for Chapter 2
Chapter 3
Averages of Arithmetical Functions
3.1 Introduction
3.2 The big oh notation. Asymptotic equality of functions
3.3 Euler's summation formula
3.4 Some elementary asymptotic formulas
3.5 The average order of din)
3.6 The average order of the divisor functions a,(n)
3.7 The average order of ~0(n)
3.8 An application to the distribution of lattice points visible from the origin
3.9 The average order of/4n) and of A(n)
3.10 The partial sums ofa Dirichlet product
3.11 Applications to pin) and A(n)
3.12 Another identity for the partial gums of a Dirichlet product
Exercises for Chapter 3
Chapter 4
Some Elementary Theorems on the Distribution of Prime
Numbers
4.1 Introduction
4.2 Chebyshev's functions (x) and (x)
4.3 Relations connecting/x) and n(x)
4.4 Some equivalent forms of the prime number theorem
4.5 Inequalities for (n) and p,
4.6 Shapiro's Tauberian theorem
4.7 Applications of Shapiro's theorem
4.8 An asymptotic formula for the partial sums, (I/p)
4.9 The partial sums of the M6bius function 91
4.10 Brief sketch of an elementary proof of the prime number theorem
4.11 Selbcrg's asymptotic formula
Exercises for Chapter 4
Chapter 5
Congruences
5.1 Definition and basic properties of congruences
5.2 Residue classes and complete residue systems
5.3 Linear congruences
Chapter 6
Finite Abelian Groups and Their Characters
Chapter 7
Dirichlet's Theorem on Primes in Arithmetic Progressions
Chapter 8
Periodic Arithmetical Functions and Gauss Sums
Chapter 9
Quadratic Residues and the Quadratic Reciprocity Law
Chapter 10
Primitive Roots
Chapter 11
Dirichlet Series and Euler Products
Chapter 12
The Functions (s) and L(s,x)
Chapter 13
Analytic Proof of the Prime Number Theorem
前言/序言
解析数论导论 电子书 下载 mobi epub pdf txt