Mathematics for Machine Learning

Mathematics for Machine Learning pdf epub mobi txt 电子书 下载 2026

Marc Peter Deisenroth
图书标签:
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
Part I: Mathematical Foundations
Introduction and Motivation
Linear Algebra
Analytic Geometry
Matrix Decompositions
Vector Calculus
Probability and Distribution
Continuous Optimization
Part II: Central Machine Learning Problems
When Models Meet Data
Linear Regression
Dimensionality Reduction with Principal Component Analysis
Density Estimation with Gaussian Mixture Models
Classification with Support Vector Machines
· · · · · · (收起)

具体描述

https://mml-book.github.io/

::This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics::

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

用户评价

评分

##市面上最好的机器学习入门教材(我菜我先说)

评分

##不管是拿来入门还是重温都很适合

评分

##剑桥出版的书文风总是规整一些,读起来排版很美。前面小错误不少,网站上给了校正。

评分

##剑桥出版的书文风总是规整一些,读起来排版很美。前面小错误不少,网站上给了校正。

评分

##虽然很基础,但是对于有些东西经常会给出多种角度的解释,总有一种能让人容易理解和接受,还不错的书,但是如果花太长时间看就比较不值得

评分

##开源好评

评分

读了数学基础部分,内容不多,但是把一些简单的概念讲得更加透彻,有助于建立数学思维体系

评分

##剑桥出版的书文风总是规整一些,读起来排版很美。前面小错误不少,网站上给了校正。

评分

##剑桥出版的书文风总是规整一些,读起来排版很美。前面小错误不少,网站上给了校正。

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou 等,本站所有链接都为正版商品购买链接。

© 2026 windowsfront.com All Rights Reserved. 静流书站 版权所有