正版宏量子機器學習中數據挖掘的量子計算方法:英文9787560357591維特剋 (Wit pdf epub mobi txt 電子書 下載 2024

圖書介紹


正版宏量子機器學習中數據挖掘的量子計算方法:英文9787560357591維特剋 (Wit

簡體網頁||繁體網頁
維特剋 Wittek P. 著



點擊這裡下載
    

想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-12-22


類似圖書 點擊查看全場最低價

店鋪: 溫文爾雅圖書專營店
齣版社: 哈爾濱工業大學齣版社
ISBN:9787560357591
商品編碼:28524930745
包裝:平裝-膠訂
齣版時間:2016-01-01

正版宏量子機器學習中數據挖掘的量子計算方法:英文9787560357591維特剋 (Wit epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

相關圖書



正版宏量子機器學習中數據挖掘的量子計算方法:英文9787560357591維特剋 (Wit epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

正版宏量子機器學習中數據挖掘的量子計算方法:英文9787560357591維特剋 (Wit pdf epub mobi txt 電子書 下載



具體描述

【拍前必讀】:

本店銷售的書籍品相可能因為存放時間長短關係會有成色不等,請放心選購。

付款後,不缺貨的情況下,48小時內發貨,如有缺貨的情況下,我們會及時在聊天窗口給您留言告知。

發貨地北京,一般情況下發貨後同城次日可以到達,省外具體以快遞公司運輸為準。

望每位讀者在收貨的時候要驗貨,有什麼意外可以拒簽,這是對您們權益的保護。

注意:節假日全體放假,請自助下單;如需幫助請及時與我們聯係。祝您購物愉快!商傢熱綫:010-57272736

基本信息

書名:量子機器學習中數據挖掘的量子計算方法:英文

定價:98.00元

作者:維特剋 (Wittek P.)

齣版社:哈爾濱工業大學齣版社

齣版日期:2016-01-01

ISBN:9787560357591

字數:

頁碼:

版次:1

裝幀:平裝-膠訂

開本:16開

商品重量:0.4kg

編輯推薦


內容提要


目錄


目錄

Preface
Notations
PartOne FundamentaIConcepts
1 Introduction
1.1 Learning Theory and Data Mining
1.2 Why Quantum Computers?
1.3 A Heterogeneous Model
1.4 An Overview of Quantum Machine Learning Algorithms
1.5 Quantum—Like Learning on Classical Computers
2 Machine Learning
2.1 Data—DrivenModels
2.2 FeatureSpace
2.3 Supervised and Unsupervised Learning
2.4 GeneralizationPerformance
2.5 ModeIComplexity
2.6 Ensembles
2.7 Data Dependencies and ComputationalComplexity
3 Quantum Mechanics
3.1 States and Superposition
3.2 Density Matrix Representation and Mixed States
3.3 Composite Systems and Entanglement
3.4 Evolution
3.5 Measurement
3.6 UncertaintyRelations
3.7 Tunneling
3.8 Adiabatic Theorem
3.9 No—CloningTheorem
4 Quantum Computing
4.1 Qubits and the Bloch Sphere
4.2 QuantumCircuits
4.3 Adiabatic Quantum Computing
4.4 QuantumParallelism
4.5 Grover's Algorithm
4.6 ComplexityClasses
4.7 QuantumInformationTheory
Part Two ClassicalLearning Algorithms
5 Unsupervised Learning
5.1 Principal Component Analysis
5.2 ManifoldEmbedding
5.3 K—Means and K—Medians Clustering
5.4 HierarchicalClustering
5.5 Density—BasedClustering
6 Pattern Recogrution and Neural Networks
6.1 ThePerceptron
6.2 HopfieldNetworks
6.3 FeedforwardNetworks
6.4 DeepLearning
6.5 ComputationalComplexity
7 Supervised Learning and Support Vector Machines
7.1 K—NearestNeighbors
7.20ptimal Margin Classifiers
7.3 SoftMargins
7.4 Nonlinearity and KemelFunctions
7.5 Least—SquaresFormulation
7.6 Generalization Performance
7.7 Multiclass Problems
7.8 Loss Functions
7.9 ComputationalComplexity
8 Regression Analysis
8.1 Linear Least Squares
8.2 NonlinearRegression
8.3 NonparametricRegression
8.4 ComputationalComplexity
9 Boosting
9.1 WeakClassifiers
9.2 AdaBoost
9.3 A Family of Convex Boosters
9.4 Nonconvex Loss Functions
Part Three Quantum Computing and Machine Learning
10 Clustering Structure and Quantum Computing
10.1 Quantum Random Access Memory
10.2 Calculating Dot Products
10.3 Quantum Principal Component Analysis
10.4 Toward Quantum Manifold Embedding
10.5 QuantumK—Means
10.6 QuantumK—Medians
10.7 Quantum Hierarchical Clustering
10.8 ComputationalComplexity
11 Quantum Pattern Recognition
11.1 Quantum Associative Memory
11.2 The Quantum Perceptron
11.3 Quantum Neural Networks
11.4 PhysicaIRealizations
11.5 ComputationalComplexity
12 QuantumClassification
12.1 Nearest Neighbors
12.2 Support Vector Machines with Grover's Search
12.3 Support Vector Machines with Exponential Speedup
12.4 ComputationalComplexity
13 Quantum Process Tomography and Regression
13.1 Channel—State Duality
13.2 Quantum Process Tomography
13.3 Groups, Compact Lie Groups, and the Unitary Group
13.4 Representation Theory
13.5 Parallel Application and Storage of the Unitary
13.6 Optimal State for Learning
13.7 Applying the Unitary and Finding the Parameter for the Input State
14 Boosting and Adiabatic Quantum Computing
14.1 Quantum Annealing
14.2 Quadratic Unconstrained Binary Optimization
14.3 Ising Model
14.4 QBoost
14.5 Nonconvexity
14.6 Sparsity, Bit Depth, and Generalization Performance
14.7 Mapping to Hardware
14.8 ComputationalComplexity
Bibliography

作者介紹


文摘


序言



正版宏量子機器學習中數據挖掘的量子計算方法:英文9787560357591維特剋 (Wit 下載 mobi epub pdf txt 電子書

正版宏量子機器學習中數據挖掘的量子計算方法:英文9787560357591維特剋 (Wit pdf epub mobi txt 電子書 下載
想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

評分

評分

評分

評分

評分

評分

評分

評分

類似圖書 點擊查看全場最低價

正版宏量子機器學習中數據挖掘的量子計算方法:英文9787560357591維特剋 (Wit pdf epub mobi txt 電子書 下載


分享鏈接


去京東購買 去京東購買
去淘寶購買 去淘寶購買
去噹噹購買 去噹噹購買
去拼多多購買 去拼多多購買


正版宏量子機器學習中數據挖掘的量子計算方法:英文9787560357591維特剋 (Wit bar code 下載
扫码下載





相關圖書




本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 windowsfront.com All Rights Reserved. 靜流書站 版權所有