发表于2025-01-03
模式识别导论 pdf epub mobi txt 电子书 下载
基本信息
书名:模式识别导论
定价:25.00元
作者:齐敏,李大健,郝重阳
出版社:清华大学出版社
出版日期:2009-06-01
ISBN:9787302200666
字数:
页码:252
版次:1
装帧:平装
开本:16开
商品重量:0.422kg
编辑推荐
本书内容由浅入深,便于教师根据不同情况选择教学内容。同时讲解详细,配有丰富的图表和例题,有助于读者阅读与理解。提供了习题和计算机作业,供学习时使用。
内容提要
本书按照统计模式识别、句法模式识别、模糊模式识别法和神经网络模式识别法四大理论体系组织全书,其中统计模式识别是模式识别的经典内容和基础知识,模糊模式识别法和神经网络模式识别法两部分反映了模式识别学科发展的新进展,附录部分归纳了书中需要用到的概率知识、向量和矩阵运算的常用公式,以及供上机练习用的模式样本数据。
本书内容由浅入深,便于教师根据不同情况选择教学内容。同时讲解详细,配有丰富的图表和例题,有助于读者阅读与理解。提供了习题和计算机作业,供学习时使用。
本书可作为高等院校电子信息类专业高年级本科生和研究生的教材,也可供从事模式识别工作的广大科技人员参考。
目录
第1章 绪论
1.1 模式和模式识别的概念
1.2 模式识别系统
1.2.1 简例
1.2.2 模式识别系统组成
1.3 模式识别概况
1.3.1 模式识别发展简介
1.3.2 模式识别分类
1.4 模式识别的应用
第2章 聚类分析
2.1 距离聚类的概念
2.2 相似性测度和聚类准则
2.2.1 相似性测度
2.2.2 聚类准则
2.3 基于距离阈值的聚类算法
2.3.1 近邻聚类法
2.3.2 大小距离算法
2.4 层次聚类法
2.5 动态聚类法
2.5.1 K-均值算法
2.5.2 迭代自组织的数据分析算法
2.6 聚类结果的评价
习题
第3章 判别函数及几何分类法
3.1 判别函数
3.2 线性判别函数
3.2.1 线性判别函数的一般形式
3.2.2 线性判别函数的性质
3.3 广义线性判别函数
3.4 线性判别函数的几何性质
3.4.1 模式空间与超平面
3.4.2 权空间与权向量解
3.4.3 二分法
3.5 感知器算法
3.6 梯度法
3.6.1 梯度法基本原理
3.6.2 固定增量算法
3.7 小平方误差算法
3.8 非线性判别函数
3.8.1 分段线性判别函数
3.8.2 分段线性判别函数的学习方法
3.8.3 势函数法
习题
第4章 基于统计决策的概率分类法
4.1 研究对象及相关概率
4.2 贝叶斯决策
4.2.1 小错误率贝叶斯决策
4.2.2 小风险贝叶斯决策
4.2.3 正态分布模式的贝叶斯决策
4.3 贝叶斯分类器的错误率
4.3.1 错误率的概念
4.3.2 错误率分析
4.3.3 正态分布贝叶斯决策的错误率计算
4.3.4 错误率的估计
4.4 聂曼·皮尔逊决策
4.5 概率密度函数的参数估计
4.5.1 大似然估计
4.5.2 贝叶斯估计与贝叶斯学习
4.6 概率密度函数的非参数估计
4.6.1 非参数估计的基本方法
4.6.2 Parzen窗法
4.6.3 k近邻估计法
4.7 后验概率密度函数的势函数估计法
习题
第5章 特征选择与特征提取
5.1 基本概念
5.2 类别可分性测度
5.2.1 基于距离的可分性测度
5.2.2 基于概率分布的可分性测度
5.3 基于类内散布矩阵的单类模式特征提取
5.4 基于K-L变换的多类模式特征提取
5.5 特征选择
5.5.1 特征选择的准则
5.5.2 特征选择的方法
习题
第6章 句法模式识别
6.1.句法模式识别概述
6.2 形式语言的基本概念
6.2.1 基本定义
6.2.2 文法分类
6.3 模式的描述方法
6.3.1 基元的确定
6.3.2 模式的链表示法
6.3.3 模式的树表示法
6.4 文法推断
6.4.1 基本概念
6.4.2 余码文法的推断
6.4.3 扩展树文法的推断
6.5 句法分析
6.5.1 参考链匹配法
6.5.2 填充树图法
6.5.3 CYK分析法
6.5.4 厄利分析法
6.6 句法结构的自动机识别
6.6.1 有限态自动机与正则文法
6.6.2 下推自动机与上下文无关文法
习题
第7章 模糊模式识别法
7.1 模糊数学概述
7.1.1 模糊数学的产生背景
7.1.2 模糊性
7.1.3 模糊数学在模式识别领域的应用
7.2 模糊集合
7.2.1 模糊集合定义
7.2.2 隶属函数的确定
7.2.3 模糊集合的运算
7.2.4 模糊集合与普通集合的相互转化
7.3 模糊关系与模糊矩阵
7.3.1 模糊关系定义
7.3.2 模糊关系的表示
7.3.3 模糊关系的建立
7.3.4 模糊关系和模糊矩阵的运算
7.3.5 模糊关系的三大性质
7.4 模糊模式分类的直接方法和间接方法
7.4.1 直接方法——隶属原则
7.4.2 间接方法——择近原则
7.5 模糊聚类分析法
7.5.1 基于模糊等价关系的聚类分析法
7.5.2 模糊相似关系直接用于分类
7.5.3 模糊K-均值算法
7.5.4 模糊ISODATA算法
习题
第8章 神经网络模式识别法
附录A 向量和矩阵运算
附录B 标准正态分布表及概率计算
附录C 计算机作业所用样本数据
参考文献
作者介绍
暂时没与相关内容
文摘
第1章 绪论
1.1 模式和模式识别的概念
从广义方面讲,模式(pattern)是一个客观事物的描述,即一个可用来仿效的完善的例子。模式识别(pattern recognition)按照哲学的定义,是指一个“外部信息到达感觉器官并被转换成有意义的感觉经验”的过程。
例如,桌上的玻璃杯里装着某种物质,人们对它进行仔细观察,在这个过程中,眼睛、鼻子、皮肤等不同的感觉器官接收到一些来自这个物体的所谓的外部信息:无色、透明、液体、冒气、无臭、温度较高,这些感觉信息被送到大脑后,经过处理,转换成了感觉经验——热水,这实际上就是一个模式识别的过程。
人是一个深不可测的信息处理系统,具有超级模式识别能力。事实上,每个人每天都在进行模式识别。例如,一个人到一个新的城市里去找公共汽车站,就是在做模式识别。再例如,在一群嘈杂的人群中,我们能够区别出熟悉的朋友的声音;我们还能够认识不同的人书写的“不是很潦草”的字符;等等。这些其实都是模式识别过程。不同的人或同一个人在不同的时间写出的字是不完全相同的,有时还会有很大差别,但我们能够识别,这是因为在人的头脑中有这样一个仿制的模型,这就是模式。模式是由大量的取样、学习、归纳而成的,人们将所看到的信息与此模式比较,从而判断此信息是否属于该类模式。因此,模式识别问题通常表现为对一组过程或事件的判别或分类(patternclassification)。人类具有的模式识别功能可否由机器来实现呢?这正是本书所要研究的内容。
序言
暂时没与相关内容
还不错
评分满意
评分还不错
评分正品
评分还不错
评分可以
评分正品
评分正品
评分正品
模式识别导论 pdf epub mobi txt 电子书 下载