內容簡介
J-全純麯綫理論自其由Gromov於1985年引入以來,已經變得非常重要。在數學中,它的應用包括許多辛拓撲中的關鍵結果。它也是創立Floer同調的主要靈感之一。在數學物理中,它提供瞭一個自然的語境用以在其中定義鏡像對稱猜想的兩個重要成分-Gromov-Witten不變量和量子上同調。《美國數學會經典影印係列:J-全純麯綫和辛拓撲(第2版 影印版)》的主要目的是以充分和嚴格的細節來建立這個主題的基本定理。特彆地,《美國數學會經典影印係列:J-全純麯綫和辛拓撲(第2版 影印版)》包含關於球麵的Gromov緊性定理、球麵的黏閤定理以及在半正情形下量子乘法的結閤性的完整的證明。《美國數學會經典影印係列:J-全純麯綫和辛拓撲(第2版 影印版)》也可以作為對辛拓撲當前工作的介紹:有兩個關於應用的長的章節,一章專注於辛拓撲的經典結果,另一章涉及量子上同調。最後一章概述瞭Floer理論的一些新進展。《美國數學會經典影印係列:J-全純麯綫和辛拓撲(第2版 影印版)》的五個附錄提供瞭與綫性橢圓算子的經典理論、Fredholm理論和Sobolev空間相關的必需的背景知識,以及關於零虧格穩定麯綫模空間的討論和四維流形中J·全純麯綫的交點的正性的證明。第二版澄清瞭各種爭議,糾正瞭第1版中的幾個錯誤,並包含瞭一些在第10章和附錄C與D中的增加的結果,更新瞭對於新進展的參考文獻。
內頁插圖
目錄
Preface to the second edition
Preface
Chapter 1. Introduction
1.1. Symplectic manifolds
1.2. Moduli spaces: regularity and compactness
1.3. Evaluation maps and pseudocycles
1.4. The Gromov-Witten invariants
1.5. Applications and further developments
Chapter 2. J-holomorpluc Curves
2.1. Almost complex structures
2.2. The nonlinear Cauchy-Riemann equations
2.3. Unique continuation
2.4. Criticalpoints
2.5. Somewhere injective curves
2.6. The adjunction inequality
Chapter 3. Moduli Spaces and Transversality
3.1. Moduli spaces of simple curves
3.2. Transversality
3.3. A regularity criterion
3.4. Curves with pointwise constraints
3.5. Implicit function theorem
Chapter 4. Compactness
4.1. Energy
4.2. The bubbling phenomenon
4.3. The mean value inequality
4.4. The isoperimetric inequality
4.5. Removal of singularities
4.6. Convergence modulo bubbling
4.7. Bubbles connect
Chapter 5. Stable Maps
5.1. Stable maps
5.2. Gromov convergence
5.3. Gromov compactness
5.4. Uniqueness of the limit
5.5. Gromov compactness for stable maps
5.6. The Gromov topology
Chapter 6. Moduli Spaces of Stable Maps
6.1. Simple stable maps
6.2. Transversality for simple stable maps
6.3. Transversality for evaluation maps
6.4. Semipositivity
6.5. Pseudocycles
6.6. Gromov-Witten pseudocycles
6.7. The pseudocycle of graphs
Chapter 7. Gromov-Witten Invariants
7.1. Counting pseudoholomorphic spheres
7.2. Variations on the definition
7.3. Counting pseudoholomorphic graphs
7.4. Rational curves in projective spaces
7.5. Axioms for Gromov-Witten invariants
Chapter 8. Hamiltonian Perturbations
8.1. Trivial bundles
8.2. Locally Hamiltonian fibrations
8.3. Pseudoholomorphic sections
8.4. Pseudoholomorphic spheres in the fiber
8.5. The pseudocycle of sections
8.6. Counting pseudoholomorphic sections
Chapter 9. Applications in Symplectic Topology
9.1. Periodic orbits of Hamiltonian systems
9.2. Obstructions to Lagrangian embeddings
9.3. The nonsqueezing theorem
9.4. Symplectic 4-manifolds
9.5. The group of symplectomorphisms
9.6. Hofer geometry
9.7. Distinguishing symplectic structures
Chapter 10, Gluing
10.1. The gluing theorem
10.2. Connected sums of J-holomorphic curves
10.3. Weighted norms
10.4. Cutoff functions
10.5. Construction of the gluing map
10.6. The derivative of the gluing map
10.7. Surjectivity of the gluing map
10.8. Proof of the splitting axiom
10.9. The gluing theorem revisited
Chapter 11, Quantum Cohomology
11.1. The small quantum cohomology ring
11.2. The Gromov-Witten potential
11.3. Four examples
……
Chapter 12. Floer Homology
Appendix A. Fredholm Theory
Appendix B. Elliptic Regularity
Appendix C. The Riemann-Roch Theorem
Appendix D. Stable Curves of Genus Zero
Appendix E. Singularities and Intersections (written with Laurent Lazzarini)
Bibliography
List of Symbols
Index
美國數學會經典影印係列:J-全純麯綫和辛拓撲(第2版 影印版) 下載 mobi epub pdf txt 電子書