内容简介
从《古今数学思想》到《数学世纪》,30多年来,《古今数学思想》受到广泛的欢迎和好评,是公认的常销书。但这部经典巨著写到1930年代为止,要想了解以后的数学,怎么办?现代数学太庞杂了。如果谁还想了解更新的数学,那么意大利数学家奥迪弗雷迪的《数学世纪》是十分理想的读物。这本薄薄的小册子,内容却很丰富。作者为了吸引读者眼球,选择了一种阐述方式,对现代数学思想的根源、脉络及展望交代得非常清楚,兼顾纯理论和应用数学,读起来感到轻松自然、获益匪浅。
《数学世纪 过去100年间30个重大问题》以简短可读的方式论述了整个20世纪的数学。20世纪的数学博大精深,新兴领域及学科的建立发展,许多经典问题得到解决,大量新的有意义的问题的引入,为数学带来了活力。《数学世纪 过去100年间30个重大问题》介绍了数学基础,20世纪的纯粹数学、应用和计算数学,以及目前未解的重要问题,中间穿插了希尔伯特的23个问题的解决情况、菲尔兹奖和沃尔夫奖得主的工作成就等。
目录
译者序
前言
致谢
导论
第1章 基础
1.1 1920年代:集合
1.2 1940年代:结构
1.3 1960年代:范畴
1.4 1980年代:函数
第2章 纯粹数学
2.1 数学分析:勒贝格测度(1902)
2.2 代数:施泰尼茨对域的分类(1910)
2.3 拓扑学:布劳威尔的不动点定理(1910)
2.4 数论:盖尔芳德的超越数(1929)
2.5 逻辑:哥德尔的不完全性定理(1931)
2.6 变分法:道格拉斯的极小曲面(1931)
2.7 数学分析:施瓦兹的广义函数论(1945)
2.8 微分拓扑:米尔诺的怪异结构(1956)
2.9 模型论:鲁宾逊的超实数(1961)
2.10 集合论:科恩的独立性定理(1963)
2.11 奇点理论:托姆对突变的分类(1964)
2.12 代数:高林斯坦的有限群分类(1972)
2.13 拓扑学:瑟斯顿对三维曲面的分类(1982)
2.14 数论:怀尔斯证明费马大定理(1995)
2.15 离散几何:黑尔斯解决开普勒问题(1998)
第3章 应用数学
3.1 结晶学:比伯巴赫的对称群(1910)
3.2 张量演算:爱因斯坦的广义相对论(1915)
3.3 博弈论:冯·诺伊曼的极小极大定理(1928)
3.4 泛函分析:冯·诺伊曼对量子力学的公理化(1932)
3.5 概率论:柯尔莫哥洛夫的公理化(1933)
3.6 优化理论:丹齐格的单纯形法(1947)
3.7 一般均衡理论:阿罗一德布鲁存在性定理(1954)
3.8 形式语言理论:乔姆斯基的分类(1957)
3.9 动力系统理论:KAM定理(1962)
3.10 纽结理论:琼斯的不变量(1984)
第4章 数学与计算机
4.1 算法理论:图灵的刻画(1936)
4.2 人工智能:香农对国际象棋对策的分析(1950)
4.3 混沌理论:劳伦茨的奇怪吸引子(1963)
4.4 计算机辅助证明:阿佩尔与哈肯的四色定理(1976)
4.5 分形分析:芒德布罗集(1980)
第5章 未解问题
5.1 数论:完美数问题(公元前300年)
5.2 复分析:黎曼假设(1859)
5.3 代数拓扑:庞加莱猜想(1904)
5.4 复杂性理论:P=NP问题(1972)
结束语
参考文献
索引
译后记
数学世纪 过去100年间30个重大问题 电子书 下载 mobi epub pdf txt
评分
☆☆☆☆☆
很不错的一本小册子,内容比较丰富
评分
☆☆☆☆☆
科普书,不过也是专业性有点强,慢慢看喽!
评分
☆☆☆☆☆
评分
☆☆☆☆☆
不错,期待阅读…………~~
评分
☆☆☆☆☆
读读历史。虽然大部分都不懂。
评分
☆☆☆☆☆
这是关于高等数学的30个重大理论问题的科普书籍哦!很不错哦!!
评分
☆☆☆☆☆
很好的一本数学科普书,适合数学专业的学生和中小学数学教师看。
评分
☆☆☆☆☆
4,有界算子的拓扑与范畴性质、拓扑同构、范数的等价、弱拓扑等价、算子的矩阵、拓扑余子空间、投影算子、Hahn-Banach定理。
评分
☆☆☆☆☆
京东服务可以,孩子买来看的