量化投资――MATLAB数据挖掘技术与实践

量化投资――MATLAB数据挖掘技术与实践 pdf epub mobi txt 电子书 下载 2025

卓金武 著
图书标签:
  • 量化投资
  • MATLAB
  • 数据挖掘
  • 金融工程
  • 投资策略
  • 时间序列分析
  • 机器学习
  • 风险管理
  • 技术分析
  • 统计套利
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 电子工业出版社
ISBN:9787121302305
版次:1
商品编码:12089192
包装:平装
丛书名: 大数据金融丛书
开本:16开
出版时间:2017-01-01
用纸:胶版纸
页数:440
字数:717000
正文语种:中文

具体描述

产品特色

内容简介

  

全书内容分为三篇。第一篇为基础篇,主要介绍量化投资与数据挖掘的关系,以及数据挖掘的概念、实现过程、主要内容、主要工具等内容。第二篇为技术篇,系统介绍了数据挖掘的相关技术及这些技术在量化投资中的应用,主要包括数据的准备、数据的探索、关联规则方法、数据回归方法、分类方法、聚类方法、预测方法、诊断方法、时间序列方法、智能优化方法等内容。第三篇为实践篇,主要介绍数据挖掘技术在量化投资中的综合应用实例,包括统计套利策略的挖掘与优化、配对交易策略的挖掘与实现、数据挖掘在股票程序化交易中的综合应用,以及基于数据挖掘技术的量化交易系统的构建。本书的读者对象为从事投资、数据挖掘、数据分析、数据管理工作的专业人士;金融、经济、管理、统计等专业的教师和学生;希望学习MATLAB的广大科研人员、学者和工程技术人员。

作者简介

卓金武,MathWorks中国科学计算业务总监,主要职责是向中国区MATLAB正版用户提供数据挖掘和量化投资解决方案。曾2次获全国大学生数学建模竞赛一等奖 (2003, 2004),1次获全国研究生数学建模竞赛一等奖 (2007);主编三著两部:《MATLAB在数学建模中的应用》(第一版和第二版),《量化投资:数据挖掘技术与实践(MATLAB版)》。周英,中科数据首席数据科学家,曾就职于知名搜索引擎公司6年,主要从事互联网文本挖掘工作的研发工作,目前专注的领域为大数据挖掘技术的工业应用研究和工程应用,曾获美国大学生数学建模竞赛二等奖一项,全国研究生数学建模竞赛二等奖一项,著有《大数据挖掘:系统方法与实例分析》

内页插图

目录

第一篇 基础篇
第1章 绪论 2
1.1 量化投资与数据挖掘的关系 2
1.1.1 什么是量化投资 2
1.1.2 量化投资的特点 3
1.1.3 量化投资的核心――量化模型 5
1.1.4 量化模型的主要产生方法――
数据挖掘 7
1.2 数据挖掘的概念和原理 8
1.2.1 什么是数据挖掘 8
1.2.2 数据挖掘的原理 10
1.3 数据挖掘在量化投资中的应用 11
1.3.1 宏观经济分析 11
1.3.2 估价 13
1.3.3 量化选股 14
1.3.4 量化择时 14
1.3.5 算法交易 14
1.4 本章小结 15
参考文献 16
第2章 数据挖掘的内容、过程及
工具 17
2.1 数据挖掘的内容 17
2.1.1 关联 17
2.1.2 回归 19
2.1.3 分类 20
2.1.4 聚类 21
2.1.5 预测 22
2.1.6 诊断 23
2.2 数据挖掘过程 24
2.2.1 数据挖掘过程概述 24
2.2.2 挖掘目标的定义 25
2.2.3 数据的准备 26
2.2.4 数据的探索 28
2.2.5 模型的建立 29
2.2.6 模型的评估 33
2.2.7 模型的部署 35
2.3 数据挖掘工具 36
2.3.1 MATLAB 36
2.3.2 SAS 37
2.3.3 SPSS 38
2.3.4 WEKA 39
2.3.5 R 41
2.3.6 工具的比较与选择 42
2.4 本章小结 43
参考文献 43
第3章 MATLAB快速入门 44
3.1 MATLAB快速入门 44
3.1.1 MATLAB概要 44
3.1.2 MATLAB的功能 45
3.1.3 快速入门案例 46
3.1.4 入门后的提高 55
3.2 MATLAB常用技巧 55
3.2.1 常用标点的功能 55
3.2.2 常用操作指令 56
3.2.3 指令编辑操作键 56
3.2.4 MATLAB数据类型 56
3.3 MATLAB开发模式 58
3.3.1 命令行模式 58
3.3.2 脚本模式 58
3.3.3 面向对象模式 58
3.3.4 三种模式的配合 58
3.4 小结 59
第二篇 技术篇
第4章 数据的准备 63
4.1 数据的收集 63
4.1.1 认识数据 63
4.1.2 数据挖掘的数据源 64
4.1.3 数据抽样 65
4.1.4 量化投资的数据源 67
4.1.5 从雅虎获取交易数据 69
4.1.6 从大智慧获取财务数据 71
4.1.7 从Wind中获取高质量数据 73
4.2 数据质量分析 75
4.2.1 数据质量分析的必要性 75
4.2.2 数据质量分析的目的 75
4.2.3 数据质量分析的内容 76
4.2.4 数据质量分析的方法 76
4.2.5 数据质量分析的结果及应用 82
4.3 数据预处理 82
4.3.1 为什么需要数据预处理 82
4.3.2 数据预处理的主要任务 83
4.3.3 数据清洗 84
4.3.4 数据集成 88
4.3.5 数据归约 89
4.3.6 数据变换 90
4.4 本章小结 92
参考文献 93
第5章 数据的探索 94
5.1 衍生变量 95
5.1.1 衍生变量的定义 95
5.1.2 变量衍生的原则和方法 96
5.1.3 常用的股票衍生变量 96
5.1.4 评价型衍生变量 101
5.1.5 衍生变量数据收集与集成 103
5.2 数据的统计 104
5.2.1 基本描述性统计 105
5.2.2 分布描述性统计 106
5.3 数据可视化 106
5.3.1 基本可视化方法 107
5.3.2 数据分布形状可视化 108
5.3.3 数据关联情况可视化 110
5.3.4 数据分组可视化 111
5.4 样本选择 113
5.4.1 样本选择的方法 113
5.4.2 样本选择应用实例 113
5.5 数据降维 116
5.5.1 主成分分析(PCA)基本
原理 116
5.5.2 PCA应用案例:企业综合
实力排序 118
5.5.3 相关系数降维 122
5.6 本章小结 123
参考文献 123
第6章 关联规则方法 124
6.1 关联规则概要 124
6.1.1 关联规则的提出背景 124
6.1.2 关联规则的基本概念 125
6.1.3 关联规则的分类 127
6.1.4 关联规则挖掘常用算法 128
6.2 Apriori算法 128
6.2.1 Apriori算法的基本思想 128
6.2.2 Apriori算法的步骤 129
6.2.3 Apriori算法的实例 129
6.2.4 Apriori算法的程序实现 132
6.2.5 Apriori算法的优缺点 135
6.3 FP-Growth算法 136
6.3.1 FP-Growth算法步骤 136
6.3.2 FP-Growth算法实例 137
6.3.3 FP-Growth算法的优缺点 139
6.4 应用实例:行业关联选股法 139
6.5 本章小结 141
参考文献 142
第7章 数据回归方法 143
7.1 一元回归 144
7.1.1 一元线性回归 144
7.1.2 一元非线性回归 148
7.1.3 一元多项式回归 153
7.2 多元回归 153
7.2.1 多元线性回归 153
7.2.2 多元多项式回归 157
7.3 逐步归回 160
7.3.1 逐步回归的基本思想 160
7.3.2 逐步回归步骤 161
7.3.3 逐步回归的MATLAB方法 162
7.4 Logistic回归 164
7.4.1 Logistic模型 164
7.4.2 Logistic回归实例 165
7.5 应用实例:多因子选股模型
的实现 168
7.5.1 多因子模型的基本思想 168
7.5.2 多因子模型的实现 169
7.6 本章小结 172
参考文献 172
第8章 分类方法 173
8.1 分类方法概要 173
8.1.1 分类的概念 173
8.1.2 分类的原理 174
8.1.3 常用的分类方法 175
8.2 K-近邻(KNN) 176
8.2.1 K-近邻原理 176
8.2.2 K-近邻实例 177
8.2.3 K-近邻特点 180
8.3 贝叶斯分类 181
8.3.1 贝叶斯分类原理 181
8.3.2 朴素贝叶斯分类原理 182
8.3.3 朴素贝叶斯分类实例 184
8.3.4 朴素贝叶斯特点 185
8.4 神经网络 185
8.4.1 神经网络的原理 185
8.4.2 神经网络的实例 188
8.4.3 神经网络的特点 188
8.5 逻辑斯蒂(Logistic) 189
8.5.1 逻辑斯蒂的原理 189
8.5.2 逻辑斯蒂的实例 189
8.5.3 逻辑斯蒂的特点 189
8.6 判别分析 190
8.6.1 判别分析的原理 190
8.6.2 判别分析的实例 191
8.6.3 判别分析的特点 191
8.7 支持向量机(SVM) 192
8.7.1 SVM的基本思想 192
8.7.2 理论基础 193
8.7.3 支持向量机的实例 196
8.7.4 支持向量机的特点 196
8.8 决策树 197
8.8.1 决策树的基本概念 197
8.8.2 决策树的建构的步骤 198
8.8.3 决策树的实例 201
8.8.4 决策树的特点 202
8.9 分类的评判 202
8.9.1 正确率 202
8.9.2 ROC曲线 204
8.10 应用实例:分类选股法 206
8.10.1 案例背景 206
8.10.2 实现方法 208
8.11 延伸阅读:其他分类方法 210
8.12 本章小结 211
参考文献 211
第9章 聚类方法 212
9.1 聚类方法概要 212
9.1.1 聚类的概念 212
9.1.2 类的度量方法 214
9.1.3 聚类方法的应用场景 216
9.1.4 聚类方法的分类 217
9.2 K-means方法 217
9.2.1 K-means的原理和步骤 218
9.2.2 K-means实例1:自主编程 219
9.2.3 K-means实例2:集成函数 221
9.2.4 K-means的特点 224
9.3 层次聚类 225
9.3.1 层次聚类的原理和步骤 225
9.3.2 层次聚类的实例 227
9.3.3 层次聚类的特点 229
9.4 神经网络聚类 229
9.4.1 神经网络聚类的原理和步骤 229
9.4.2 神经网络聚类的实例 229
9.4.3 神经网络聚类的特点 230
9.5 模糊C-均值(FCM)方法 230
9.5.1 FCM的原理和步骤 230
9.5.2 FCM的应用实例 232
9.5.3 FCM算法的特点 233
9.6 高斯混合聚类方法 233
9.6.1 高斯混合聚类的原理和步骤 233
9.6.2 高斯聚类的实例 236
9.6.3 高斯聚类的特点 236
9.7 类别数的确定方法 237
9.7.1 类别的原理 237
9.7.2 类别的实例 238
9.8 应用实例:股票聚类分池 240
9.8.1 聚类目标和数据描述 240
9.8.2 实现过程 240
9.8.3 结果及分析 242
9.9 延伸阅读 244
9.9.1 目前聚类分析研究的主要
内容 244
9.9.2 SOM智能聚类算法 245
9.10 本章小结 246
参考文献 246
第10章 预测方法 247
10.1 预测方法概要 247
10.1.1 预测的概念 247
10.1.2 预测的基本原理 248
10.1.3 量化投资中预测的主要
内容 249

10.1.4 预测的准确度评价及影响
因素 250
10.1.5 常用的预测方法 251
10.2 灰色预测 252
10.2.1 灰色预测原理 252
10.2.2 灰色预测的实例 254
10.3 马尔科夫预测 256
10.3.1 马尔科夫预测的原理 256
10.3.2 马尔科夫过程的特性 257
10.3.3 马尔科夫预测的实例 258
10.4 应用实例:大盘走势预测 262
10.4.1 数据的选取及模型的建立 263
10.4.2 预测过程 264
10.4.3 预测结果与分析 265
10.5 本章小结 265
参考文献 267
第11章 诊断方法 268
11.1 离群点诊断概要 268
11.1.1 离群点诊断的定义 268
11.1.2 离群点诊断的作用 269
11.1.3 离群点诊断方法分类 271
11.2 基于统计的离群点诊断 271
11.2.1 理论基础 271
11.2.2 应用实例 273
11.2.3 优点与缺点 275
11.3 基于距离的离群点诊断 275
11.3.1 理论基础 275

11.3.2 应用实例 276
11.3.3 优点与缺点 278
11.4 基于密度的离群点挖掘 278
11.4.1 理论基础 278
11.4.2 应用实例 279
11.4.3 优点与缺点 281
11.5 基于聚类的离群点挖掘 281
11.5.1 理论基础 281
11.5.2 应用实例 282
11.5.3 优点与缺点 284
11.6 应用实例:离群点诊断量化
择时 284
11.7 延伸阅读:新兴的离群点
挖掘方法 286
11.7.1 基于关联的离群点挖掘 286
11.7.2 基于粗糙集的离群点挖掘 286
11.7.3 基于人工神经网络的离群点
挖掘 287
11.8 本章小结 287
参考文献 288
第12章 时间序列方法 289
12.1 时间序列的基本概念 289
12.1.1 时间序列的定义 289
12.1.2 时间序列的组成因素 290
12.1.3 时间序列的分类 291
12.1.4 时间序列分析方法 292
12.2 平稳时间序列分析方法 292
12.2.1 移动平均法 293
12.2.2 指数平滑法 294
12.3 季节指数预测法 295
12.3.1 季节性水平模型 295
12.3.2 季节性趋势模型 296
12.4 时间序列模型 296
12.4.1 ARMA模型 296
12.4.2 ARIMA模型 297
12.4.3 ARCH模型 298
12.4.4 GARCH模型 298
12.5 应用实例:基于时间序列的
股票预测 299
12.6 本章小结 303
参考文献 303
第13章 智能优化方法 304
13.1 智能优化方法概要 305
13.1.1 智能优化方法的概念 305
13.1.2 在量化投资中的作用 305
13.1.3 常用的智能优化方法 305
13.2 遗传算法 307
13.2.1 遗传算法的原理 307
13.2.2 遗传算法的步骤 308
13.2.3 遗传算法实例 316
13.2.4 遗传算法的特点 317
13.3 模拟退火算法 318
13.3.1 模拟退火算法的原理 318
13.3.2 模拟退火算法步骤 320
13.3.3 模拟退火算法实例 323
13.3.4 模拟退火算法的特点 329
13.4 应用实例:组合投资优化 330
13.4.1 问题描述 330
13.4.2 求解过程 330
13.5 延伸阅读:其他智能方法 331
13.5.1 粒子群算法 331
13.5.2 蚁群算法 333
13.6 本章小结 334
参考文献 335
第三篇 实践篇
第14章 统计套利策略的挖掘与
优化 338
14.1 统计套利策略概述 338
14.1.1 统计套利的定义 338
14.1.2 统计套利策略的基本思想 338
14.1.3 统计套利策略挖掘的方法 339
14.2 基本策略的挖掘 340
14.2.1 准备数据 340
14.2.2 探索交易策略 340
14.2.3 验证交易策略 341
14.2.4 选择最佳的参数 342
14.2.5 参数扫描法 345
14.2.6 考虑交易费 346
14.3 高频交易策略及优化 348
14.3.1 高频交易的基本思想 348
14.3.2 高频交易的实现 350
14.4 多交易信号策略的组合及
优化 352
14.4.1 多交易信号策略 352
14.4.2 交易信号的组合优化机理 354
14.4.3 交易信号的组合优化实现 355
14.5 本章小结 358
参考文献 358
第15章 配对交易策略的挖掘与
实现 360
15.1 配对交易概述 360
15.1.1 配对交易的定义 360
15.1.2 配对交易的特点 361
15.1.3 配对选取步骤 362
15.2 协整检验的理论基础 363
15.2.1 协整关系的定义 363
15.2.2 EG两步协整检验法 363
15.2.3 Johansen协整检验法 364
15.3 配对交易的实现 365
15.3.1 协整检验的实现 365
15.3.2 配对交易函数 367
15.3.3 协整配对中的参数优化 369
15.4 延伸阅读:配对交易的
三要素 370
15.4.1 配对交易的前提 370
15.4.2 配对交易的关键 371
15.4.3 配对交易的假设 371
15.5 本章小结 371
参考文献 372
第16章 基于Wind数据的程序化
交易 373
16.1 程序化交易概述 373
16.1.1 程序化交易的定义 373
16.1.2 程序化交易的实现过程 374
16.1.3 程序化交易的分类 376
16.2 数据的处理及探索 377
16.2.1 获取股票日交易数据 377
16.2.2 计算指标 381
16.2.3 数据标准化 388
16.2.4 变量筛选 389
16.3 模型的建立及评估 391
16.3.1 股票预测的基本思想 391
16.3.2 模型的训练及评价 392
16.4 组合投资的优化 394
16.4.1 组合投资的理论基础 394
16.4.2 组合投资的实现 398
16.5 程序化交易的实施 402
16.6 本章小结 403
参考文献 404
第17章 基于Quantrader平台的
量化投资 405
17.1 量化平台概述 405
17.1.1 量化平台现状 405
17.1.2 Quantrader量化平台的构成 406
17.1.3 Quantrader的工作流程 407
17.2 基于Quantrader平台的量化
实现过程 407
17.2.1 获取交易数据 408
17.2.2 计算衍生变量 410

17.2.3 数据标准化 410
17.2.4 变量优选 410
17.2.5 训练模型 411
17.2.6 策略回测 411
17.3 延伸阅读:Quantrader平台
的拓展 412
第18章 基于数据挖掘技术的量化
交易系统 415
18.1 交易系统概述 416
18.1.1 交易系统的定义 416
18.1.2 交易系统的作用 416
18.2 DM交易系统总体设计 417
18.2.1 系统目标 417
18.2.2 相关约定 418
18.2.3 系统结构 418
18.3 短期交易子系统 419
18.3.1 子系统功能描述 419
18.3.2 数据预处理模块 419
18.3.3 量化选股模块 419
18.3.4 策略回测模块 420
18.4 中长期交易子系统 420
18.4.1 子系统功能描述 420
18.4.2 导入数据模块 421
18.4.3 投资组合优化模块 421
18.5 系统的拓展与展望 423
18.6 本章小结 423
参考文献 424

前言/序言

除了你的才华,其他一切都不重要!




近年来,互联网和人工智能技术的飞速发展,推动传统金融大踏步前进,尤其是量化投资、互联网金融、移动计算等领域,用一日千里来形容亦不为过。2015年年初,李克强总理在政府工作报告中提出制定“互联网+”行动计划,推动移动互联网、云计算、大数据等与各行业的融合发展。2015年9月,国务院又印发了《促进大数据发展行动纲要》,提出“推动产业创新发展,培育数据应用新业态,积极推动大数据与其他行业的融合,大力培育互联网金融、数据服务、数据处理分析等新业态”。可见,大数据金融将会成为未来十年闪亮的领域之一。2012年年初,中国量化投资学会联合中国工信出版集团电子工业出版社,共同策划出版了“量化投资与对冲基金丛书”,深受业内好评。在此基础上,我们再次重磅出击,整合业内顶尖人才,推出“大数据金融丛书”,引领时代前沿,助力行业发展。

本书特点

和卓金武认识是在一次行业会议上,我听到他演讲有关数据挖掘的课题,内容很详实精彩,会后与他交流后,发现他在量化投资领域做了很多年的研究,于是就建议他写一本有关基于数据挖掘的量化投资的教材,他欣然同意。一年后该书出版,受到业内很多好评。这次的改版更是对原先内容的一个大的升级和优化。

数据挖掘是人工智能领域的一个重要分支,在学术界发展了大概30年,最近在业内改头换面,以“大数据”的名词大放异彩。这个技术在过去十年各行各业都得到了广泛的应用,如语音识别、人脸识别等。在金融投资的领域,数据挖掘主要用于各种交易模式的识别、策略优化等,最近几年也得到了越来越多的研究人员的支持。这本《量化投资——MATLAB数据挖掘技术与实践》,以详实的内容、深入的研讨,将数据挖掘技术用于量化投资的方方面面,可以对读者起着非常重要的借鉴作用。

本书的基础篇阐述了与数据挖掘有关的基础理论,包括数据挖掘原理、数据挖掘过程及数据挖掘的主要工具,特别是通过几个案例进行快速的MATLAB入门,让读者了解MATLAB中与数据挖掘有关的一些函数和工具箱的作用。

技术篇阐述了有关数据挖掘的各种技术,包括数据的准备、数据的探索、关联规则方法、数据回归、分类方法、聚类方法、预测方法、诊断方法、时间序列方法和智能优化方法等。其中,关联规则、分类方法、聚类方法是数据挖掘的最主要的内容。关联规则解决不同因素之间的因果关系问题,试图从大量的数据中,找到看似不相关的因素之间背后有可能隐藏的逻辑关系。分类方法则对历史知识进行分类处理,试图找到对未来的预测。例如,可以将股票分为“涨”和“跌”两大类别,学习分类模型后,可用于对未来股票的走势进行预测。聚类是一种无监督的学习,也就是说,在没有历史样本的情况下,找到背后的大致规律。这特别适用于波动不规律的品种的投资策略。马尔科夫链是一种预测方法,可以用于大盘走势的预测。我们日常看到的K线都属于时间序列。时间序列的研究方法可以用于K线走势的预测,包括ARMA模型、ARIMA模型、ARCH模型、GARCH模型等。

实践篇则介绍了多个基于数据挖掘的策略,包括统计套利策略、配对交易策略,以及有关数据挖掘系统的一些阐述等。统计套利用到的模式和分类技术;配对交易用到的协整关系和配对交易函数,可以用基于数据挖掘的技术来实现。书稿的最后两章分别阐述了基于Quantrader平台的量化投资和基于数据挖掘技术的量化交易系统,为投资者提供实际交易的辅助。

卓金武的这本书在理论方面具有很深的探讨,在实践方面又有多个案例,是一本不可多得的优秀教材,特此推荐。

美好前景

中国经济经过几十年的高速发展,各行各业基本上已经定型,能够让年轻人成长的空间越来越小。未来十年,大数据金融领域是少有的几个有着百倍、甚至千倍成长空间的行业,在传统的以人为主的分析逐步被数据和模型替代的过程中,从事数据处理、模型分析、交易实现、资产配置的核心人才(我们称之为宽客),将有广阔的舞台可以充分展示自己的才华。在这个领域中,将不再关心你的背景和资历,无论学历高低,无论有无经验,只要你勤奋、努力,脚踏实地地研究数据、研究模型、研究市场,实现财务自由并非是遥不可及的梦想。对于宽客来说,除了你的才华,其他一切都不重要!


丁鹏 博士

中国量化投资学会 理事长

《量化投资——策略与技术》作者

“大数据金融丛书”主编

2016.10 上海

前 言



量化投资交易策略的业绩稳定,市场规模和份额不断扩大,得到越来越多投资者的认可。中国金融业飞速发展,尤其是2010年股指期货的推出,使得量化投资和对冲基金逐步进入国内投资者的视野。2012年丁鹏博士所著的《量化投资——策略与技术》出版后,更是推动了量化投资技术在国内的普及。目前,量化投资、对冲基金已经成为中国资本市场热门的话题之一,各投资机构纷纷开始着手打造各自的量化投资精英团队。

量化投资是将投资理念及策略通过具体指标、参数的设计,融入到具体的模型中,用模型对市场进行不带任何情绪的跟踪,简单而言,就是用数量化的方法对股票、期货等投资对象进行估值,选取适合的对象进行投资。目前,量化投资的书籍主要集中在模型和策略及工具的使用上,但关于如何产生这些量化模型、量化策略的书籍的确非常少。金融市场瞬息万变,为了更好地进行量化投资,我们要不断去验证既有模型的有效性,同时要想在金融行业保持自己的竞争力,又必须不断开发新的模型,而验证模型、开发模型,所谓量化投资的主要内容,都需要数据的支撑。另一方面,金融领域是数据资源保存最好、最为丰富的行业,在金融领域已经积累了大量的数据,同时每天还在产生大量的交易数据、价格数据等数据信息。这些数据资源正好为量化投资提供了很好的数据基础,那么问题的关键就是如何利用金融业丰富的数据资源更好地进行量化投资。

数据挖掘技术是从数据中挖掘有用知识的一门系统性的技术,刚好解决了数据利用的问题,所以,数据挖掘与量化投资便很自然地结合在一起。但数据挖掘在国内也是一个新领域,所以,还没有关于量化投资与数据挖掘相结合的相关书籍。另外,目前关于数据挖掘的几本书基本都是译著,由于语言和文化的差异,国内读者读起来相对吃力。在这样的背景下,能有一本书介绍如何利用数据挖掘技术进行量化投资还是很好的。

巧合的是,笔者在MathWorks平时的工作职责之一是支持金融客户,相当比例是关于量化投资的,二是支持其他商业客户的数据挖掘,所以对这两个领域都有一定的了解。在一次研讨会上,丁鹏博士与笔者讨论了数据挖掘在量化投资中应用的话题,感觉这是个非常好的课题,建议笔者写一本这样的书。笔者对这个课题也非常感兴趣,于是就开始了这本书的创作。

《量化投资——数据挖掘技术与实践(MATLAB版)》于2015年6月出版,一年以内已四次印刷,不少热心的读者发来E-mail与作者讨论书中的内容,并提出建议和不足。为了回馈读者,也为了让本书质量更好,于是在2016年年初就启动了新版的编写工作。新版主要变动的地方有两个方面:一个是对上一版中发现的不足进行了修订,另一个是增加了MATLAB快速入门和基于Quantrader平台的量化投资两个章节。另外,有关程序化交易内容的章节也进行了大幅修改,主要是让程序直接与Wind数据对接。

本书内容

全书内容分为三篇。

第一篇为基础篇,主要介绍一些基本概念和知识,包括量化投资与数据挖掘的关系,以及数据挖掘的概念、实现过程、主要内容、主要工具等内容,并在第三章介绍了MATLAB快速入门。

第二篇为技术篇,是本书的主体,系统介绍了数据挖掘的相关技术及这些技术在量化投资中的应用实例。这部分又分为如下三个层次:

(1)数据挖掘前期的一些技术,包括数据的准备(收集数据、数据质量分析、数据预处理等)和数据的探索(衍生变量、数据可视化、样本选择、数据降维等)。

(2)数据挖掘的核心六大类方法,包括关联规则、回归、分类、聚类、预测和诊断。对于每类方法,则详细介绍了其包含的典型算法,包括基本思想、应用场景、算法步骤、MATLAB实现程序和应用案例。同时,对每类方法还介绍了一个在量化投资中的应用案例,以强化这些方法在量化投资中的实用性。

(3)数据挖掘中特殊的实用技术,包含两章内容,一是关于时序数据挖掘的时间序列技术,二是关于优化的智能优化方法。这个层次也是数据技术体系中不可或缺的技术。时序数据是数据挖掘中的一类特殊数据,并且金融数据往往都具有时序性,所以针对该类特殊的数据类型,又介绍了时间序列方法。另外,数据挖掘离不开优化,量化投资也离不开优化,所以又以一章智能优化方法来介绍两个比较常用的优化方法,遗传算法和模拟退火算法。

第三篇为实践篇,主要介绍数据挖掘技术在量化投资中的综合应用实例,包括统计套利策略的挖掘与优化、配对交易策略的挖掘与实现、基于Wind数据的程序化交易,基于Quantrader平台的量化投资,最后一章——基于数据挖掘技术的量化交易系统,则给出了集成主流数据挖掘技术的量化投资系统的框架,读者可以利用该框架,依据书中介绍的数据挖掘技术,结合自己的情况,开发出属于自己的量化交易系统,从而轻松实现从理论到实践的跨越,更好地利用数据挖掘技术在量化投资的领域乘风破浪,不断创造佳绩。

本书特色

综观全书,可发现本书的特点鲜明,主要表现在:

(1)方法务实,学以致用。本书介绍的方法都是数据挖掘中的主流方法,都经过实践的检验,具有较强的实践性。对于每种方法,本书基本都给出了完整、详细的源代码,这对读者来说,具有非常大的参考价值,很多程序可供读者直接套用并加以学习,并可以直接转化为自己的量化投资实战工具。

(2)知识系统,易于理解。本书的知识体系应该是当前数据挖掘书籍中最全、最完善的,不仅包含详细的数据挖掘流程、数据准备方法、数据探索方法,还包含六大类数据挖掘主体方法、时序数据挖掘方法、智能优化方法。正因为有完整的知识体系,读者读起来才有很好的完整感,从而更利于理解数据挖掘的知识体系,这对于读者



用户评价

评分

郭i郭冬冬哦脚后跟vv吧v肠穿孔黄发的说说冯突然问我

评分

精装版质量很过硬,也算是丁博士的名著了吧~哈哈~

评分

本书结合当下经济和金融形势,分为互联网金融篇、财富管理篇、量化投资篇、新技术篇,介绍了2012年以来互联网金融和金融科技的发展趋势,以及量化金融投资技术、理财产品购买方法注意事项、新技术展望和未来投资方向。

评分

书的质量特别好,物流也快,内容也很详尽,解决了很多困惑。

评分

不错的量化投资书,推荐大家购买。。

评分

挺好的书,看起来很不错啊?

评分

不错,不错,挺好,挺好,就是发货慢了点,不错,不错,挺好,挺好,就是发货慢了点

评分

书很好,有空慢慢看。

评分

不错,很全面,正在学习。

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou 等,本站所有链接都为正版商品购买链接。

© 2025 windowsfront.com All Rights Reserved. 静流书站 版权所有