动力系统VIII 奇异理论II:应用 [Dynamical Systems Ⅷ: Singularity Theory Ⅱ:Applications] pdf epub mobi txt 电子书 下载 2025

图书介绍


动力系统VIII 奇异理论II:应用 [Dynamical Systems Ⅷ: Singularity Theory Ⅱ:Applications]

简体网页||繁体网页
[俄罗斯] 阿诺德(Amol',V.I.) 著



点击这里下载
    


想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-22

类似图书 点击查看全场最低价

出版社: 科学出版社
ISBN:9787030234957
版次:1
商品编码:12034545
包装:精装
丛书名: 国外数学名著系列(续一)(影印版)52
外文名称:Dynamical Systems Ⅷ: Singularity Theory Ⅱ:Applications
开本:16开
出版时间:2009-01-01
用纸:胶版纸

动力系统VIII 奇异理论II:应用 [Dynamical Systems Ⅷ: Singularity Theory Ⅱ:Applications] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2025

相关图书



动力系统VIII 奇异理论II:应用 [Dynamical Systems Ⅷ: Singularity Theory Ⅱ:Applications] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2025

动力系统VIII 奇异理论II:应用 [Dynamical Systems Ⅷ: Singularity Theory Ⅱ:Applications] pdf epub mobi txt 电子书 下载



具体描述

内容简介

  This volume of the Encyclopaedia is devoted to applications of singularity theory in mathematics and physics. The authors Arnol'd,Vasil'ev, Goryunov and Lyashko study bifurcation sets arising in various contexts such as the stability of singular points of dynamical systems, boundaries of the domains of ellipticity and hyperbolicity of partial differential equations, boundaries of spaces of oscillating linear equations with variable coefficients and boundaries of fundamental systems of solutions.
  The book also treats applications of the following topics: functions on manifolds with boundary, projections of complete intersections, caustics, wave fronts, evolvents, maximum functions, shock waves, Petrovskij lacunas and generalizations of Newton's topological proof that Abelian integrals are transcendental.
  The book contains a list of open problems, conjectures and directions for future research.
  It will be of great interest for mathematicians and physicists as a reference and research aid.

内页插图

目录

Singularity Theory II Classification and Applications
V.I Arnol'd,V.V Goryunov,O.V Lyashko,V.A Vasil'ev
Translated from the Russian by J.S Joel
Contents
Foreword
Chapter 1. Classification of Functions and Mappings 8
1. Functions on a Manifold with Boundary 8
1.1. Classification of Functions on a Manifold with a Smooth Boundary 8
1.2. Versal Deformations and Bifurcation Diagrams 11
1.3. Relative Homology Basis 14
1.4. Intersection Form 14
1.5. Duality of Boundary Singularities 17
1.6. Functions on a Manifold with a Singular Boundary 17
2. Complete Intersections 20
2.1. Start of the Classification 21
2.2. Critical and Discriminant Sets 24
2.3. The Nonsingular Fiber 26
2.4. Relations Between the Tyurina and Milnor Numbers 28
2.5. Adding a Power of a New Variable 29
2.6. Relative Monodromy 29
2.7. Dynkin Diagrams 30
2.8. Parabolic and Hyperbolic Singularities 31
2.9. Vector Fields on a Quasihomogeneous Complete Intersection 33
2.10. The Space of a Miniversal Deformation of a Quasihomogeneous Singularity 35
2.11. Topological Triviality of Versal Deformations 36
3. Projections and Left-Right Equivalence 37
3.1. Projections of Space Curves onto the Plane 38
3.2. Singularities of Projections of Surfaces onto the Plane 39
3.3. Projections of Complete Intersections 43
3.4. Projections onto the Line 47
3.5. Mappings of the Line into the Plane 57
3.6. Mappings of the Plane into Three-Space 59
4. Nonisolated Singularities of Functions 65
4.1. Transversal Type of a Singularity 65
4.3. Topology of the Nonsingular Fiber 66
4.4. Series of Isolated Singularities 67
4.5. The Number of Indices of a Series 68
4.6. Functions with a One-Dimensional Complete Intersection as Critical Set and with Transversal Type Ai 69
5. Vector Fields Tangent to Bifurcation Varieties 79
5.1. Functions on Smooth Manifolds 79
5.2. Projections onto the Line 81
5.3. Isolated Singularities of Complete Intersections 82
5.4. The Equation of a Free Divisor 84
6. Divergent and Cyclic Diagrams of Mappings 84
6.1. Germs of Smooth Functions 85
6.2. Envelopes 85
6.3. Holopmorphic Diagrams 87
Chapter 2. Applications of the Classification of Critical Points of Functions 88
1. Legendre Singularities 88
1.1. Equidistants 89
1.2. Projective Duality 90
1.3. Legendre Transformation 90
1.4. Singularities of Pedals and Primitives 91
1.5. The Higher-Dimensional Case 91
2. Lagrangian Singularities 92
2.1. Caustics 92
2.2. The Manifold of Centers 93
2.3. Caustics of Systems of Rays 94
2.4. The Gauss Map 95
2.5. Caustics of Potential Systems of Noninteracting Particles 95
2.6. Coexistence of Singularities 97
3. Singularities of Maxwell Sets 98
3.1. Maxwell Sets 98
3.2. Metamorphoses of Maxwell Sets 100
3.3. Extended Maxwell Sets 103
3.4. Complete Maxwell Set Close to the Singularity As 106
3.5. The Structure of Maxwell Sets Close to the Metamorphosis As 110
3.6. Enumeration of the Connected Components of Spaces of Nondegenerate Polynomials 112
4. Bifurcations of Singular Points of Gradient Dynamical Systems 113
4.1. Thom's Conjecture 114
4.2. Singularities of Corank One 115
4.3. Guckenheimer's Counterexample 116
4.4. Three-Parameter Families of Gradients 117
4.5. Normal Forms of Gradient Systems D4 118
4.6. Bifurcation Diagrams and Phase Portaits of Standard Families 118
4.7. Multiparameter Families 120
Chapter 3. Singularities of the Boundaries of Domains of Function Spaces 121
1. Boundary of Stability 122
1.1. Domains of Stability 122
1.2. Singularities of the Boundary of Stability in Low-Dimensional Spaces 122
1.3. Stabilization Theorem 123
1.4. Finiteness Theorem 124
2. Boundary of Ellipticity 124
2.1. Domains of Ellipticity 124
2.2. Stabilization Theorems 124
2.3. Boundaries of Ellipticity and Minimum Functions 125
2.4. Singularities of the Boundary of Ellipticity in Low-Dimensional Spaces 126
3. Boundary of Hyperbolicity 127
3.1. Domain of Hyperbolicity 127
3.2. Stabilization Theorems 127
3.3. Local Hyperbolicity 128
3.4. Local Properties of Domains of Hyperbolicity 129
4. Boundary of the Domain of Fundamental Systems 131
4.1. Domain of Fundamental Systems and the Bifurcation Set 131
4.2. Singularities of Bifurcation Sets of
Generic Three-Parameter Families 132
4.3. Bifurcation Sets and Schubert Cells 136
4.4. Normal Forms 140
4.5. Duality 141
4.6. Bifurcation Sets and Tangential Singularities 142
4.7. The Group of Transformations of Sets and Finite Determinacy. 143
4.8. Bifurcation Diagrams of Flattenings of Projective Curves 145
S 5. Linear Differential Equations and Complete Flag Manifolds 146
Chapter 4. Applications of Ramified Integrals and Generalized Picard-Lefschetz Theories 149
1. Newton's Theorem on Nonintegrability 150
1.1. Newton's Theorem and Ar

前言/序言

  要使我国的数学事业更好地发展起来,需要数学家淡泊名利并付出更艰苦地努力。另一方面,我们也要从客观上为数学家创造更有利的发展数学事业的外部环境,这主要是加强对数学事业的支持与投资力度,使数学家有较好的工作与生活条件,其中也包括改善与加强数学的出版工作。
  从出版方面来讲,除了较好较快地出版我们自己的成果外,引进国外的先进出版物无疑也是十分重要与必不可少的。从数学来说,施普林格(Springer)出版社至今仍然是世界上最具权威的出版社。科学出版社影印一批他们出版的好的新书,使我国广大数学家能以较低的价格购买,特别是在边远地区工作的数学家能普遍见到这些书,无疑是对推动我国数学的科研与教学十分有益的事。
  这次科学出版社购买了版权,一次影印了23本施普林格出版社出版的数学书,就是一件好事,也是值得继续做下去的事情。大体上分一下,这23本书中,包括基础数学书5本,应用数学书6本与计算数学书12本,其中有些书也具有交叉性质。这些书都是很新的,2000年以后出版的占绝大部分,共计16本,其余的也是1990年以后出版的。这些书可以使读者较快地了解数学某方面的前沿,例如基础数学中的数论、代数与拓扑三本,都是由该领域大数学家编著的“数学百科全书”的分册。对从事这方面研究的数学家了解该领域的前沿与全貌很有帮助。按照学科的特点,基础数学类的书以“经典”为主,应用和计算数学类的书以“前沿”为主。这些书的作者多数是国际知名的大数学家,例如《拓扑学》一书的作者诺维科夫是俄罗斯科学院的院士,曾获“菲尔兹奖”和“沃尔夫数学奖”。这些大数学家的著作无疑将会对我国的科研人员起到非常好的指导作用。
  当然,23本书只能涵盖数学的一部分,所以,这项工作还应该继续做下去。更进一步,有些读者面较广的好书还应该翻译成中文出版,使之有更大的读者群。
  总之,我对科学出版社影印施普林格出版社的部分数学著作这一举措表示热烈的支持,并盼望这一工作取得更大的成绩。
动力系统VIII 奇异理论II:应用 [Dynamical Systems Ⅷ: Singularity Theory Ⅱ:Applications] 电子书 下载 mobi epub pdf txt

动力系统VIII 奇异理论II:应用 [Dynamical Systems Ⅷ: Singularity Theory Ⅱ:Applications] pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

类似图书 点击查看全场最低价

动力系统VIII 奇异理论II:应用 [Dynamical Systems Ⅷ: Singularity Theory Ⅱ:Applications] pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


动力系统VIII 奇异理论II:应用 [Dynamical Systems Ⅷ: Singularity Theory Ⅱ:Applications] bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 windowsfront.com All Rights Reserved. 静流书站 版权所有