發表於2024-12-22
流形上的層(英文版) [Sheaves on Manifolds] pdf epub mobi txt 電子書 下載
很新內容也很好!
評分5 Algebraic Curves and Riemann Surfaces, Rick Miranda (1995, ISBN
評分質量不錯,內容棒棒大,
評分質量不錯,內容棒棒大,
評分1 The General Topology of Dynamical Systems, Ethan Akin (1993, ISBN 978-0-8218-4932-3)[1]
評分正品書,質量好,價錢可以,隻是貨比較慢送到(不是說快遞,是說從供應商拿貨時)。
評分流形上的大範圍分析與整體分析。
評分莫爾斯理論 微積分中最基本的問題是一個函數的極大與極小問題。達到極值的必要條件是一階導數等於0。對於定義在流形上的分析 - jl-wu - 我的博客維流形流形上的分析 - jl-wu - 我的博客上的實值函數流形上的分析 - jl-wu - 我的博客(流形上的分析 - jl-wu - 我的博客),流形上的分析 - jl-wu - 我的博客[kg1]kg1流形上的分析 - jl-wu - 我的博客[kg1]kg1流形上的分析 - jl-wu - 我的博客,如果在坐標映射[455-01]455-01作用下,[455-02]455-02關於流形上的分析 - jl-wu - 我的博客流形上的分析 - jl-wu - 我的博客的坐標(流形上的分析 - jl-wu - 我的博客流形上的分析 - jl-wu - 我的博客,流形上的分析 - jl-wu - 我的博客流形上的分析 - jl-wu - 我的博客,…,流形上的分析 - jl-wu - 我的博客流形上的分析 - jl-wu - 我的博客)的各個偏導數在 流形上的分析 - jl-wu - 我的博客點均為0,就稱流形上的分析 - jl-wu - 我的博客為流形上的分析 - jl-wu - 我的博客的一個臨界點。它不依賴於坐標的選取。同樣地,極值隻能在臨界點達到。但是美國數學傢H.M.莫爾斯首先在1930年前後認識到這些點的數目與流形的拓撲有著密切的關係。以流形上的分析 - jl-wu - 我的博客(流形上的分析 - jl-wu - 我的博客)記二階偏導數流形上的分析 - jl-wu - 我的博客流形上的分析 - jl-wu - 我的博客/流形上的分析 - jl-wu - 我的博客流形上的分析 - jl-wu - 我的博客流形上的分析 - jl-wu - 我的博客流形上的分析 - jl-wu - 我的博客流形上的分析 - jl-wu - 我的博客流形上的分析 - jl-wu - 我的博客構成的矩陣,若流形上的分析 - jl-wu - 我的博客(流形上的分析 - jl-wu - 我的博客)在流形上的分析 - jl-wu - 我的博客點滿秩,就稱流形上的分析 - jl-wu - 我的博客為非退化的臨界點。這時候,可以選取坐標(流形上的分析 - jl-wu - 我的博客流形上的分析 - jl-wu - 我的博客,流形上的分析 - jl-wu - 我的博客流形上的分析 - jl-wu - 我的博客,…,流形上的分析 - jl-wu - 我的博客流形上的分析 - jl-wu - 我的博客),使得流形上的分析 - jl-wu - 我的博客點的坐標為(0,0,…,0),而[455-03]455-03,流形上的分析 - jl-wu - 我的博客就稱為這個臨界點的指數。流形上的分析 - jl-wu - 我的博客[kg1]kg1=0時流形上的分析 - jl-wu - 我的博客達到極小;流形上的分析 - jl-wu - 我的博客=流形上的分析 - jl-wu - 我的博客時流形上的分析 - jl-wu - 我的博客達到極大,0<流形上的分析 - jl-wu - 我的博客<流形上的分析 - jl-wu - 我的博客時流形上的分析 - jl-wu - 我的博客不一定達到極值。這時又稱流形上的分析 - jl-wu - 我的博客為鞍點。這些非退化的臨界點均是孤立的。若流形上的分析 - jl-wu - 我的博客 的所有臨界點均非退化,就稱流形上的分析 - jl-wu - 我的博客 為莫爾斯函數。這類函數是很多的,它們按適當的拓撲在函數空間中稠密。
評分3 An Introduction to Gröbner Bases, William W. Adams, Philippe Loustaunau (1994, ISBN 978-0-8218-3804-4)
流形上的層(英文版) [Sheaves on Manifolds] pdf epub mobi txt 電子書 下載