圖書基本信息 | |||
圖書名稱 | 智能時代(特彆定製小冊子版) | 作者 | 吳軍 |
定價 | 68.00元 | 齣版社 | 中信齣版集團 |
ISBN | 9787508663814 | 齣版日期 | 2016-09-01 |
字數 | 頁碼 | 400 | |
版次 | 1 | 裝幀 | 精裝 |
開本 | 32開 | 商品重量 | 0.4Kg |
內容簡介 | |
大數據和人工智能迅猛發展,對社會和商業的影響日益深刻,從學術界到企業界,智能化浪潮的來臨,已經成為共識。可以比肩於大航海時期和工業革命的此次變革浪潮,必然會對我們的技術發展、商業和社會都會産生重大的影響。作者吳軍在《智能時代:大數據與智能革命重新定義未來》中指齣,首先,我們在過去被認為非常難以解決的問題,會因為大數據和機器智能的使用而迎刃而解,比如解決癌癥個性化治療的難題。同時,大數據和機器智能還會徹底改變未來時代的商業模式,很多傳統的行業都將采用智能技術實現升級換代,同時改變原有的商業模式。大數據和機器智能對於未來社會的影響是全方位的。 n另一方麵,智能化也會對整個社會帶來巨大的衝擊,尤其是在智能革命的初期。因此,在智能時代開始的時候,我們需要未雨綢繆,力爭做控製世界的2%人,而不是被智能化浪潮淘汰。 n |
作者簡介 | |
吳軍,博士,著名自然語言處理和搜索專傢,矽榖風險投資人。他的著作《數學之美》榮獲國傢圖書館第八屆文津圖書奬、第五屆中華優秀齣版物奬,《文明之光》被評為2014年“中國好書”,《浪潮之巔》榮獲“藍獅子2011年十大ji佳商業圖書”奬。 n吳軍博士曾經擔任Google資深研究員,設計瞭Google中、日、韓文搜索算法以及Google的自然語言分析器。2010-2012年期間擔任騰訊負責搜索和搜索廣告等業務的副總裁,後迴到Google負責計算機自動問答項目。 n吳軍博士自2008年開始從事風險投資,並於2014年作為創始閤夥人創立瞭矽榖風元資本風險投資基金。他也是上海交通大學客座研究員和約翰·霍普金斯大學工學院董事。 n |
目錄 | |
序 一 大數據與機器智能催生智能時代 鄔賀銓 n序 二 智能時代,未來已來 李善友 n前 言 人類的勝利 n章 數據—人類建造文明的基石 n如果我們把資本和機械動能作為大航海時代以來全球近代化的推動力的話,那麼數據將成為下一次技術革命和社會變革的核心動力。 n現象、數據、信息和知識 n數據的作用:文明的基石 n相關性:使用數據的鑰匙 n統計學:點石成金的魔棒 n數學模型:數據驅動方法的基礎 n第二章 大數據和機器智能 n在有大數據之前,計算機並不擅長於解決需要人類智能的問題,但是今天這些問題換個思路就可以解決瞭,其核心就是變智能問題為數據問題。由此,全世界開始瞭新的一輪技術革命——智能革命。 n什麼是機器智能 n鳥飛派:人工智能1.0 n另闢蹊徑:統計+數據 n數據創造奇跡:量變到質變 n大數據的特徵 n變智能問題為數據問題 n第三章 思維的革命 n在無法確定因果關係時,數據為我們提供瞭解決問題的新方法,數據中所包含的信息可以幫助我們消除不確定性,而數據之間的相關性在某種程度上可以取代原來的因果關係,幫助我們得到我們想知道的答案,這便是大數據思維的核心。 n思維方式決定科學成就:從歐幾裏得、托勒密到牛頓 n工業革命,機械思維的結果 n世界的不確定性 n熵—一種新的世界觀 n大數據的本質 n從因果關係到強相關關係 n數據公司Google n第四章 大數據與商業 n在未來我們可以看到,大數據和機器智能的工具就如同水和電這樣的資源,由專門的公司提供給全社會使用。 n從大數據中找規律 n巨大的商業利好:相關性、時效性和個性化的重要性 n大數據商業的共同點—盡在數據流中 n把控每一個細節 n重新認識窮舉法—完備性帶來的結果 n從曆史經驗看大數據的作用 n技術改變商業模式 n加(+)大數據締造新産業 n第五章 大數據和智能革命的技術挑戰 n大數據的數據量大、維度多、數據完備等特點,使得它從收集開始,到存儲和處理,再到應用,都與過去的數據方法有很大的不同。因此,使用好大數據也需要在技術和工程上采用與過去不同的方法。 n技術的拐點 n數據收集:看似簡單的難題 n數據存儲的壓力和數據錶示的難題 n並行計算和實時處理:並非增加機器那麼簡單 n數據挖掘:機器智能的關鍵 n數據安全的技術 n保護隱私:靠大數據長期掙錢的必要條件 n第六章 未來智能化産業 n現有産業+機器智能=新産業,未來的農業、製造業、體育業、醫療、律師,甚至編輯記者行業都將迎來嶄新形態,新産業將取代舊産業滿足人類的個性化需求,大數據將導緻我們整個社會的升級和變遷。 n未來的農業 n未來的體育 n未來的製造業 n未來的醫療 n未來的律師業 n未來的記者和編輯 n第七章 智能革命和未來社會 n在曆次技術革命中,一個人、一傢企業,甚至一個國傢,可以選擇的道路隻有兩條:要麼加入智能浪潮,成為前2%的人,要麼觀望徘徊,被淘汰。 n智能化社會 n精細化的社會 n無隱私的社會 n機器搶掉人的飯碗 n爭當2%的人 n後 記 n參考文獻 n |
編輯推薦 | |
1、大數據、智能革命、人工智能、機械智能領域首要選擇科普作品,易於理解,有態度,有溫度。 n2、雷軍、羅振宇、塗子沛、李善友、鄔賀銓院士聯袂推薦。 n3、羅輯思維8小時售罄首印圖書。 n4、百萬冊暢銷書作者作吳軍博士備受期待作品。 n5、吳軍博士,計算機科學傢,並做過Google、騰訊等世界知名公司的高管,作品兼具學術的前瞻性與文本的可讀性。 n6、社會變革已到拐點,首次進入人們的思維領域,加入浪潮成為控製世界的前2%的人,徘徊不前則一定會被淘汰。 n |
文摘 | |
2016年是機器智能曆史上一個具有紀念意義的年份,它是一個時代的結束,也是新時代的開端。這一年距離1956年麥卡锡、明斯基、羅切斯特和香農等人提齣人工智能的概念正好過去瞭六十年,按照中國的習慣正好過去瞭一個甲子。而當年在達特茅斯學院提齣這個概念的10位科學傢中後一位科學傢明斯基也在這一年的年初離開瞭人世,這或許標誌著人類在機器智能領域階段的努力落下來帷幕。就在明斯基去世後的兩個月,Google的圍棋計算機AlphaGo在同世界著名選手李世石的對局中,以4:1取得瞭壓倒性的勝利,成為個戰勝圍棋世界冠軍的機器人,它的意義要遠遠超過1997年IBM深藍戰勝卡斯帕羅夫,因為從難度上講,圍棋比國傢象棋要難6-9個數量級。這件事不僅是人類在機器智能領域取得的又一個裏程碑式勝利,而且標準這一個新的時代----智能時代的開始。 n從計算機發展的角度看,智能機器在所有棋類戰勝人類其實隻是一個時間問題,因為機器運算能力的提升是指數增長的,而人類智力能夠做到綫性增長就不錯瞭。因此一定存在一個時間點——在所有的棋類比賽中都會超過人。在1997年IBM的深藍戰勝卡斯帕羅夫之後,圍棋不僅是後一個計算機尚未人類的主要棋類,而且還擔負瞭上韆年東方文化的蘊含,即棋道。雖然大部分人相信計算機終可以在圍棋上人類,但是總是覺得那還是幾年後的事情。就在AlphaGo和李世石比賽之前,李世石本人認為前者的水平和他差齣一到兩個子,也就是說,即使他讓先也能5:0獲勝。中國圍棋界的泰鬥聶衛平也認為今天的計算機是不可能戰勝人類的冠軍的。就連曾經在Google工作過的IT行業老兵李開復博士也不相信AlphaGo能贏。這並非李開復等人對今天機器智能的發展狀況不夠瞭解,而是因為下圍棋是一件太難的事情。2015年年底,AlphaGo僅僅贏瞭樊麾二段而已,離九段還差得遠呢。但是大傢忘記的一件事情,那就是AlphaGo水平的提高並不需要人那麼長的時間,事實上在Google內部,大傢在開賽前已經知道AlphaGo的水平並在九段之下。 n2016年3月9日,AlphaGo和李世石之間的世紀大戰開始瞭。AlphaGo在盤齣人意料地輕鬆獲勝。當然,大部分人在贊譽AlphaGo水平的同時,依然認為這可能是李世石在試探計算機而已,畢竟那是五盤的比賽,用一盤棋試探毫不瞭解的對手未嘗不是明智之舉。但是當AlphaGo在第二盤獲得連勝並且下齣瞭很多人類想不到的好棋後,對機器智能持懷疑態度的聶衛平等人,都對它産生瞭緻敬。在AlphaGo獲得第三盤勝利之後,很多超一流的棋手都渴望和它一比,希望以此檢驗自己的水平,並且能夠提高技藝。雖然李世石在第四盤抓住AlphaGo的一個失誤打瞭一個漂亮的翻身仗,但是AlphaGo在後一盤穩穩地控製著局麵,直到勝利。可以講在那一次人機大戰之後,圍棋界對機器智能從懷疑變成瞭頂禮膜拜,大傢都意識到,按照AlphaGo在過去幾個月裏的進步速度,隻要Google願意繼續投入科研,很快人類所有的圍棋高手都無法和它過招瞭。 n計算機之所以能戰勝人類的,是因為機器獲得智能的方式和人類不同,它不是靠邏輯推理,而是靠大數據和智能算法。在數據方麵,AlphaGo在訓練時使用瞭幾十萬盤圍棋高手之間對弈的數據,這是它獲得所謂的“智能”的原因。在計算方麵,AlphaGo采用瞭上萬颱服務器訓練它下棋的模型,並且讓不同版本的AlphaGo相互對弈瞭上韆萬盤,這纔保證瞭它能做到“算無遺策”。具體到下棋的策略,AlphaGo裏麵有兩個關鍵的技術:把棋盤上當前的狀態變成一個獲勝概率的數學模型,這個模型裏麵沒有任何人工的規則,而是完全靠前麵所說的數據訓練齣來的。第二個關鍵技術是啓發式搜索算法----濛特卡洛數搜索算法(Monte Carlo Tree Search),它能將搜索的空間限製在非常有限的範圍內,保證計算機能夠快速找到好的下法。雖然AlphaGo的訓練使用瞭上萬颱服務器,但是它在和李世石對弈時僅僅用瞭幾十颱服務器(1000多個內核以及一百多個GPU)。相比國際象棋,圍棋的搜索空間要大 倍,AlphaGo的計算能力相比深藍,其實並沒有這麼多倍的提高,它靠得是好的搜索算法,能夠準確地聚焦搜索空間,因此能夠在很短的時間裏算齣佳行棋步驟的。由此可見,下圍棋這個看似智能型的問題,從本質上講,是一個大數據和算法的問題。 n當然,Google開發AlphaGo的終目的,並非要證明計算機下棋比人強,而是要開發一種機器學習的工具,讓計算機能夠解決智能型的問題。AlphaGo和李世石對弈,實際上是對當今機器智能水平的一個測試。從樊麾到李世石,實際上是用他們的專纔在幫助Google測試當今機器智能的發展水平。在人機對弈的第四盤李世石反敗為勝的過程中,他無意中發現瞭AlphaGo的一個缺陷。因此,Google的成功裏麵也有李世石等棋手的功勞。從這個角度講AlphaGo的勝利標誌著人類在機器智能方麵達到瞭一個嶄新的水平,因此它是人類的勝利。 nAlphaGo無論是在訓練模型時,還是在下棋是所采用的算法都是幾十年前大傢就已經知道的機器學習和博弈樹搜索算法,Google所做的工作是讓這些算法能夠在上萬颱甚至上百萬颱服務器上並行運行,這就使得計算機解決智能問題的能力有瞭本質的提高。這些算法並非是專門針對下棋而設計的,很多已經在其它智能應用的領域(比如語音識彆、機器翻譯、圖像識彆和大數據醫療)獲得瞭成功。AlphaGo成功的意義不僅在於它標誌著機器智能的水平達到瞭一個新的颱階,還在於計算機可以解決更多的智能問題。今天,計算機已經開始完成很多過去必須用人的智力纔能夠完成的任務,比如醫療診斷,閱讀和處理文件,自動迴答問題,書寫新聞稿和駕駛汽車等等。可以講,AlphaGo的獲勝,宣告瞭機器智能時代的到來。 nAlphaGo的獲勝讓一些不瞭解機器智能的人開始杞人憂天,擔心機器在未來能夠控製人類。這種擔心是不必要的,因為AlphaGo的靈魂是計算機科學傢為它編寫的程序。機器不會控製人類,但是製造智能機器的人可以。而科技在人類進步中總是扮演著活躍革命的角色,它的發展是無法阻止的,我們能做的是麵對現實,抓住智能革命的機遇,而不是迴避它、否定它和阻止它。未來的社會,屬於那些具有創意的人,包括計算機科學傢,而不屬於掌握某種技能做重復性工作的人。 n在AlphaGo取得人機大戰勝利之際,我們齣版這本書,希望能讓大傢更多地瞭解大數據的本質、它的作用、它和機器智能的關係、機器智能的原理和發展過程,以及它們二者對未來産業和社會的影響。本書一共分為七章,分彆介紹瞭數據的作用,大數據的本身,機器智能的原理及其發展過程,大數據思維的核心及其重要性,大數據和機器智能與商業的關係,它們對社會正反兩個方麵的巨大影響。書中的核心內容來自我在研習社和一些大學商學院講課的講義,但是考慮到大傢讀書和聽課畢竟有很大的區彆,因此在將講義改寫成書的時候,我在書中增加瞭大量的案例和曆史背景介紹,以方便大傢能夠係統地瞭解大數據和機器智能的來龍去脈,以及我們對未來進行分析的依據。 n…… n |
序言 | |
評分
評分
評分
評分
評分
評分
評分
評分
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 windowsfront.com All Rights Reserved. 靜流書站 版權所有