內容簡介
《矩陣計算六講》介紹瞭矩陣計算這門學科近十年來發展起來的新方法和新理論。《矩陣計算六講》共分6 講,內容包括標準schur分解、廣義schur 分解和周期schur分解的計算,特徵值的排序問題,多項式之根的快速求法,奇異值分解的計算,求解綫性方程組和特徵值問題的krylov子空間方法,以及求解特徵值問題的共軛梯度法。
《矩陣計算六講》在選材上,在注重基礎性和實用性的前提下,重點放在瞭反映該學科的最新進展上;在內容的處理上,在介紹方法的同時,盡可能地闡明方法的設計思想和理論依據,並對有關的結論盡可能地給齣嚴格而又簡潔的數學證明;在敘述錶達上,力求清晰易讀,便於教學與自學。
《矩陣計算六講》可作為綜閤性大學、理工科大學及高等師範院校計算數學、應用數學、工程計算等專業高年級本科生和研究生的教材或教學參考書,也可供從事科學與工程計算的科技人員參考。
目錄
前言
第一講schur 分解的計算1
1.1 標準schur 分解的計算
1.1.1 householder 變換和givens 變換
1.1.2 schur 分解定理
1.1.3 實schur 分解
1.1.4 qr 方法
1.1.5 實schur 標準形之對角塊的排序問題
1.2 廣義schur 分解的計算
1.2.1 廣義schur 分解定理
1.2.2 廣義實schur 分解
1.2.3 qz 方法
1.2.4 廣義實schur 標準形之對角塊的排序問題
1.3 周期schur 分解的計算
1.3.1 周期schur 分解定理
1.3.2 周期實schur 分解
1.3.3 周期qz 方法
1.3.4 周期實schur 標準形之對角塊的排序問題
習題
第二講多項式之根的快速求法
2.1 引言
2.1.1 基本問題
2.1.2 基本理論
2.2 newton-horner 方法
2.2.1 newton 迭代法簡介
2.2.2 newton-horner 方法
2.3 快速qr 方法
2.3.1 友矩陣
2.3.2 hn 類矩陣和它的參數化
2.3.3 單步位移的快速qr 迭代
2.3.4 雙重步位移的隱式快速qr 迭代
2.3.5 具體實現時的幾個問題
習題
第三講奇異值分解的計算
3.1 基本概念和性質
3.2 golub-kahan svd 算法
3.2.1 對稱qr 方法概要
3.2.2 golub-kahan svd 算法
3.3 分而治之法
3.3.1 求解對稱特徵值問題的分而治之法
3.3.2 計算奇異值分解的分而治之法
3.4 jacobi 方法
3.4.1 求解對稱特徵值問題的jacobi 方法
3.4.2 計算奇異值分解的jacobi 方法
3.5 二分法
3.5.1 求解對稱特徵值問題的二分法
3.5.2 計算奇異值的二分法
習題
第四講krylov 子空間方法i
4.1 引言
4.2 krylov 子空間
4.2.1 krylov 子空間及其性質
4.2.2 arnoldi 分解
4.2.3 lanczos 分解
4.3 rayleigh-ritz 方法
4.3.1 rayleigh-ritz 投影方法
4.3.2 rayleigh 商的最佳逼近性
4.4 arnoldi 方法
4.4.1 經典arnoldi 算法
4.4.2 隱式重啓arnoldi 算法
4.4.3 位移求逆技術
4.5 lanczos 方法
4.5.1 經典lanczos 算法
4.5.2 收斂性理論
4.5.3 重啓lanczos 算法
習題
第五講krylov 子空間方法ii
5.1 引言
5.2 共軛梯度法
5.2.1 基本迭代格式
5.2.2 收斂性分析
5.3 極小剩餘法
5.3.1 minres 算法
5.3.2 收斂性分析
5.4 廣義極小剩餘法
5.4.1 gmres 算法
5.4.2 收斂性分析
5.5 擬極小剩餘法
5.5.1 非對稱lanczos 方法
5.5.2 qmr 算法
5.6 投影類方法
5.6.1 bcg 方法
5.6.2 cgs 方法
5.6.3 bicgstab 方法
習題
第六講共軛梯度法
6.1 引言
6.2 最優步長的計算
6.3 最速下降法
6.3.1 經典最速下降法
6.3.2 收縮最速下降法
6.3.3 梯度型同時迭代法
6.3.4 預優最速下降法
6.4 共軛梯度法
6.4.1 共軛梯度法
6.4.2 收縮共軛梯度法
6.4.3 共軛梯度型同時迭代法
6.4.4 預優共軛梯度法
6.5 預優梯度型子空間迭代法
6.5.1 pgs 迭代法
6.5.2 收斂性分析
習題
符號和定義
參考文獻
矩陣計算六講 下載 mobi epub pdf txt 電子書
評分
☆☆☆☆☆
專業書籍,寫的挺好的
評分
☆☆☆☆☆
好評,第二天就到瞭,包裝很好
評分
☆☆☆☆☆
書送的快!變分法對處理一些泛函問題很有效。
評分
☆☆☆☆☆
專業書籍,寫的挺好的
評分
☆☆☆☆☆
很好的數學專業書,對幾何和拓撲的概念講解得很清晰,趁活動拿下。
評分
☆☆☆☆☆
內容很詳細,可以看看。
評分
☆☆☆☆☆
講解的比較詳細,正在啃
評分
☆☆☆☆☆
此書將數論中的精華(elements)娓娓道齣,對概念的曆史來源和解釋都十分清晰。每一小節都附有3,4道容易解決的習題,幫助理解復習。我完全沒學過數論,一個星期也讀瞭60頁,欲罷不能。總而言之,這是一本很好的入門書,推薦。該書的作者是證明瞭三素數定理的Vinogradov,他基本解決瞭奇數Goldbach猜想。書的特點是短小,習題難。看這本書必須好好做題。很多習題源自一些研究論文,並且被IMO或CMO命題人員經常改編。這本書值得精讀。作者如果再加一點他擅長的三角和估計這方麵的內容介紹就更好瞭。送貨速度快,包裝也很好。其實我不是學數學的。也不打算以數學為職業,當然更沒有民科們的野心,隻是有一些對於數學的愛好而已。 數論,抽象代數,概率論,數理統計,應該來說是我在數學裏麵最為喜歡的東西。 我覺得這本書還是沒有讓我們落入到具體的細節當中去。我覺得這是最重要,也是最為關鍵的地方。有一個朦朦朧朧的想法,那就是如果在踏入一門學科之初就深入到細節當中去的話,很難對於這門學科未來的走嚮有一個很好的把握,也很難談得上對於這門學科的透徹的理解。我認為這本書是最好的初等數論教材 沒有之一,現在又齣第三版瞭,我馬上入手瞭。證明詳細,習題豐富,對後續學習抽象代數,高等代數也有很大的幫助。在學習瞭一定的分析課程之後,然後上手解析數論就不會很吃力。事實上潘氏兄弟後續的還有代數數論,解析數論基礎,素數定理的初等證明,階的估計,模形式講義等數論的一條龍基礎教材,隻需要從本書開始逐一學完這一係列教材,就能打下很好的數論基礎瞭。
評分
☆☆☆☆☆
可以可以可以可以可以可以