內容簡介
《偏微分方程數值解講義》是為高等院校計算數學專業高年級本科生和研究生偏微分方程數值解法課程編寫的教材。全書分為差分方法和有限元方法兩個相互獨立的部分。差分方法部分的先修課程是數值分析、數值代數;有限元部分則同時要求學生對實變函數與泛函分析有初步的瞭解。掌握一定的數學物理方程的理論和方法無疑有助於本課程的深入學習。
《偏微分方程數值解講義》在選材上注重充分反映偏微分方程數值解法中的核心內容,力圖展現算法構造與分析的基本思想;在內容的處理上,體現瞭由淺入深、循序漸進的原則;在敘述錶達上,嚴謹精練、清晰易讀,便於教學與自學。為便於讀者復習、鞏固、理解和拓廣所學的知識,每章之後配置瞭相當數量的習題,並在書後附上瞭大部分習題的答案或提示。
《偏微分方程數值解講義》可作為綜閤大學、理工科大學、高等師範院校計算數學以及相關學科的本科生和研究生的教材或教學參考書,也可供從事計算數學、應用數學和科學工程計算研究的科技人員參考。
內頁插圖
目錄
第1章 橢圓型偏微分方程的差分方法
1.1 引言
1.2 模型問題的差分逼近
1.3 一般問題的差分逼近
1.3.1 網格、網格函數及其範數
1.3.2 差分格式的構造
1.3.3 截斷誤差、相容性、穩定性與收斂性
1.3.4 邊界條件的處理
1.4 基於最大值原理的誤差分析
1.4.1 最大值原理與差分方程解的存在唯一性
1.4.2 比較定理與差分方程的穩定性和誤差估計
1.5 漸近誤差分析與外推
1.6 補充與注記
習題1
第2章 拋物型偏微分方程的差分方法
2.1 引言
2.2 模型問題及其差分逼近
2.2.1 模型問題的顯式格式及其穩定性和收斂性
2.2.2 模型問題的隱式格式及其穩定性和收斂性
2.3 一維拋物型偏微分方程的差分逼近
2.3.1 直接差分離散化方法
2.3.2 基於半離散化方法的差分格式
2.3.3 一般邊界條件的處理
2.3.4 耗散與守恒性質
2.4 高維拋物型偏微分方程的差分逼近
2.4.1 高維盒形區域上的顯式格式和隱式格式
2.4.2 二維和三維交替方嚮隱式格式及局部一維格式
2.4.3 更一般的高維拋物型問題的差分逼近
2.5 補充與注記
習題2
第3章 雙麯型偏微分方程的差分方法
3.1 引言
3.2 一維一階綫性雙麯型偏微分方程的差分方法
3.2.1 特徵綫與CFL條件
3.2.2 迎風格式
3.2.3 15ax-Wendroff格式和Beam-Warming格式
3.2.4 :蛙跳格式
3.2.5 差分格式的耗散與色散
3.2.6 初邊值問題與邊界條件的處理
3.3 一階雙麯守恒律方程與守恒型格式
3.3.1 有限體積格式
3.3.2 初始條件與邊界條件的處理
3.4 對流擴散方程的差分方法
3.4.1 對流擴散方程的中心顯式格式與修正中心顯式格式
3.4.2 對流擴散方程的迎風格式
3.4.3 對流擴散方程的隱式格式
3.4.4 對流擴散方程的特徵差分格式
3.5 波動方程的差分方法
3.5.1 波動方程的顯式格式
3.5.2 波動方程的隱式格式
3.5.3 變係數波動方程隱式格式的能量不等式和穩定性
3.5.4 基於等價一階方程組的差分格式
3.5.5 交錯型蛙跳格式與局部能量守恒性質
3.6 補充與注記
習題3
第4章 再論差分方程的相容性、穩定性與收斂性
4.1 發展方程初邊值問題及其差分逼近
4.2 截斷誤差與逼近精度的階,相容性與收斂性
4.3 穩定性與Lax等價定理
4.4 穩定性的von Neumann條件和強穩定性
4.5 修正方程分析
4.6 能量分析方法
第5章 橢圓邊值問題的變分形式
5.1 抽象變分問題
5.1.1 抽象變分問題
5.1.2 Lax-Milgram引理
5.2 變分形式與弱解
5.2.1 橢圓邊值問題的例子
5.2.2 Sobolev空間初步
5.2.3 橢圓邊值問題的變分形式與弱解
5.3 補充與注記
習題5
第6章 橢圓邊值問題的有限元方法
6.1 Galerkin方法與Ritz方法
6.2 有限元方法
6.2.1 有限元方法的一個典型例子
6.2.2 有限元的一般定義
6.2.3 有限元與有限元空間的例子
6.2.4 有限元方程與有限元解
6.3 補充與注記
習題6
第7章 橢圓邊值問題有限元解的誤差估計
7.1 Cea引理與有限元解的抽象誤差估計
7.2 Sobolev空間插值理論
7.2.1 Sobolev空間的多項式商空間與等價商範數
7.2.2 仿射等價開集上Sobolev半範數的關係
7.2.3 多項式不變算子的誤差估計
7.2.4 有限元函數的反估計
7.3 多角形區域上二階問題有限元解的誤差估計
7.3.1 H1範數意義下的誤差估計
7.3.2 Aubin—Nische技巧與L2範數意義下的誤差估計
7.4 非協調性與相容性誤差
7.4.1 第一和第二:Strang引理
7.4.2 Bramble-Hilbert,引理和雙綫性引理
7.4.3 數值積分引起的相容性誤差
7.5 補充與注記
習題7
第8章 有限元解的誤差控製與自適應方法
i8.1 有限元解的後驗誤差估計
8.2 後驗誤差估計子的可靠性與有效性
8.3 自適應方法
8.3.1 h型、p型與h-p型自適應方法
8.3.2 網格重分布型自適應方法
8.4 補充與注記
習題8
部分習題答案和提示
符號說明
參考文獻
名詞索引
精彩書摘
本章中我們介紹瞭經典的用有限差分法求解拋物型問題的顯式格式、隱式格式(包括ADI和LOD格式)。顯式格式的優點是格式構造簡單,每個分量可以獨立求解,因此易於實現;其缺點是穩定性較差。隱式格式的構造一般比較復雜,各分量需要聯立求解;其優點是穩定性好。我們注意到,對於一維問題,隱式格式對應的綫性方程組其係數矩陣是主對角占優三對角的,一般可以用經典的追趕法有效求解;而對於高維問題的ADI或LOD格式,則可以通過求解一係列具有主對角占優三對角係數矩陣的綫性方程組來高效求解。值得指齣的是,這類格式具有本質的可並行性。
從空間半離散化加時間方嚮常微分方程數值求解的角度,我們在本章的許多討論也可以平行地推廣到用有限體積法、有限元方法等求解拋物型問題上,其基本結論也是類似的。
……
前言/序言
自1995年以來,在薑伯駒院士的主持下,北京大學數學科學學院根據國際數學發展的要求和北京大學數學教育的實際,創造性地貫徹教育部“加強基礎,淡化專業,因材施教,分流培養”的辦學方針,全麵發揮我院學科門類齊全和師資力量雄厚的綜閤優勢,在培養模式的轉變、教學計劃的修訂、教學內容與方法的革新,以及教材建設等方麵進行瞭全方位、大力度的改革,取得瞭顯著的成效。2 001年,北京大學數學科學學院的這項改革成果榮獲全國教學成果特等奬,在國內外産生很大反響。
在本科教育改革方麵,我們按照加強基礎、淡化專業的要求,對教學各主要環節進行瞭調整,使數學科學學院的全體學生在數學分析、高等代數、幾何學、計算機等主乾基礎課程上,接受學時充分、強度足夠的嚴格訓練;在對學生分流培養階段,我們在課程內容上堅決貫徹“少而精”的原則,大力壓縮後續課程中多年逐步形成的過窄、過深和過繁的教學內容,為新的培養方嚮、實踐性教學環節,以及為培養學生的創新能力所進行的基礎科研訓練爭取到瞭必要的學時和空間。這樣既使學生打下寬廣、堅實的基礎,又充分照顧到每個人的不同特長、愛好和發展取嚮。與上述改革相適應,積極而慎重地進行教學計劃的修訂,適當壓縮常微、復變、偏微、實變、微分幾何、抽象代數、泛函分析等後續課程的周學時,並增加瞭數學模型和計算機的相關課程,使學生有更大的選課餘地。
偏微分方程數值解講義 下載 mobi epub pdf txt 電子書
評分
☆☆☆☆☆
看書名就知道內容瞭。很專業的書,估計來買這本書的都知道裏麵是什麼內容啦,這方麵的書不多。買本看看吧。
評分
☆☆☆☆☆
專業書籍,用來參考很不錯.........
評分
☆☆☆☆☆
大學期間學過,現在決定再看一遍!!!由於專業需要,推薦數學專業和一些工科專業可以看看
評分
☆☆☆☆☆
很經典的書。。。。。。。正在看
評分
☆☆☆☆☆
不是一般的好啊!值得入手
評分
☆☆☆☆☆
就稱它是方程(4)的一個特徵超麯麵。對於雙麯型方程,任一特徵超麯麵均由次特徵綫組成,而次特徵綫t=t(τ),x=x(τ)由下述常微分方程組 下述常微分方程組
評分
☆☆☆☆☆
很好的一本書。
評分
☆☆☆☆☆
通俗易懂,是偏微分方程數值解的經典教材。
評分
☆☆☆☆☆
買來看看的,書還不錯