歐氏空間上的勒貝格積分(修訂版)(英文版) [Lebesgue Integration on Euclidean Space Revised Edition] pdf epub mobi txt 電子書 下載 2024

圖書介紹


歐氏空間上的勒貝格積分(修訂版)(英文版) [Lebesgue Integration on Euclidean Space Revised Edition]

簡體網頁||繁體網頁
瓊斯(Frank Jones) 著



點擊這裡下載
    

想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-26


類似圖書 點擊查看全場最低價

齣版社: 世界圖書齣版公司
ISBN:9787510005558
版次:1
商品編碼:10184606
包裝:平裝
外文名稱:Lebesgue Integration on Euclidean Space Revised Edition
開本:24開
齣版時間:2010-01-01
頁數:588
正文語種:英語

歐氏空間上的勒貝格積分(修訂版)(英文版) [Lebesgue Integration on Euclidean Space Revised Edition] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

相關圖書



歐氏空間上的勒貝格積分(修訂版)(英文版) [Lebesgue Integration on Euclidean Space Revised Edition] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

歐氏空間上的勒貝格積分(修訂版)(英文版) [Lebesgue Integration on Euclidean Space Revised Edition] pdf epub mobi txt 電子書 下載



具體描述

內容簡介

  《歐氏空間上的勒貝格積分(修訂版)(英文版)》簡明、詳細地介紹勒貝格測度和Rn上的積分。《歐氏空間上的勒貝格積分(英文版)》的基本目的有四個,介紹勒貝格積分;從一開始引入n維空間;徹底介紹傅裏葉積分;深入講述實分析。貫穿全書的大量練習可以增強讀者對知識的理解。目次:Rn導論;Rn勒貝格測度;勒貝格積分的不變性;一些有趣的集閤;集閤代數和可測函數;積分;Rn勒貝格積分;Rn的Fubini定理;Gamma函數;Lp空間;抽象測度的乘積;捲積;Rn+上的傅裏葉變換;單變量傅裏葉積分;微分;R上函數的微分。
  讀者對象:《歐氏空間上的勒貝格積分(修訂版)(英文版)》適用於數學專業的學生、老師和相關的科研人員。

內頁插圖

目錄

Preface
Bibliography
Acknowledgments
1 Introduction to Rn
A Sets
B Countable Sets
C Topology
D Compact Sets
E Continuity
F The Distance Function

2 Lebesgue Measure on Rn
A Construction
B Properties of Lebesgue Measure
C Appendix: Proof of P1 and P2

3 Invariance of Lebesgue Measure
A Some Linear Algebra
B Translation and Dilation
C Orthogonal Matrices
D The General Matrix

4 Some Interesting Sets
A A Nonmeasurable Set
B A Bevy of Cantor Sets
C The Lebesgue Function
D Appendix: The Modulus of Continuity of the Lebesgue Functions

5 Algebras of Sets and Measurable Functions
A Algebras and a-Algebras
B Borel Sets
C A Measurable Set which Is Not a Borel Set
D Measurable Functions
E Simple Functions

6 Integration
A Nonnegative Functions
B General Measurable Functions
C Almost Everywhere
D Integration Over Subsets of Rn
E Generalization: Measure Spaces
F Some Calculations
G Miscellany

7 Lebesgue Integral on Rn
A Riemann Integral
B Linear Change of Variables
C Approximation of Functions in L1
D Continuity of Translation in L1

8 Fubinis Theorem for Rn
9 The Gamma Function
A Definition and Simple Properties
B Generalization
C The Measure of Balls
D Further Properties of the Gamma Function
E Stirlings Formula
F The Gamma Function on R

10 LP Spaces ,
A Definition and Basic Inequalities
B Metric Spaces and Normed Spaces
C Completeness of Lp
D The Case p=∞
E Relations between Lp Spaces
F Approximation by C∞c (Rn)
G Miscellaneous Problems ;
H The Case 0[p[1

11 Products of Abstract Measures
A Products of 5-Algebras
B Monotone Classes
C Construction of the Product Measure
D The Fubini Theorem
E The Generalized Minkowski Inequality

12 Convolutions
A Formal Properties
B Basic Inequalities
C Approximate Identities

13 Fourier Transform on Rn
A Fourier Transform of Functions in L1 (Rn)
B The Inversion Theorem
C The Schwartz Class
D The Fourier-Plancherel Transform
E Hilbert Space
F Formal Application to Differential Equations
G Bessel Functions
H Special Results for n = i
I Hermite Polynomials

14 Fourier Series in One Variable
A Periodic Functions
B Trigonometric Series
C Fourier Coefficients
D Convergence of Fourier Series
E Summability of Fourier Series
F A Counterexample
G Parsevals Identity
H Poisson Summation Formula
I A Special Class of Sine Series

15 Differentiation
A The Vitali Covering Theorem
B The Hardy-Littlewood Maximal Function
C Lebesgues Differentiation Theorem
D The Lebesgue Set of a Function
E Points of Density
F Applications
G The Vitali Covering Theorem (Again)
H The Besicovitch Covering Theorem
I The Lebesgue Set of Order p
J Change of Variables
K Noninvertible Mappings

16 Differentiation for Functions on R
A Monotone Functions
B Jump Functions
C Another Theorem of Fubini
D Bounded Variation
E Absolute Continuity
F Further Discussion of Absolute Continuity
G Arc Length
H Nowhere Differentiable Functions
I Convex Functions
Index
Symbol Index

前言/序言

  "Though of real knowledge there be little, yet of books there are plenty" -Herman Melville, Moby Dick, Chapter XXXI.
  The treatment of integration developed by the French mathematician Henri Lebesgue (1875-1944) almost a century ago has proved to be indispensable in many areas of mathematics. Lebesgues theory is of such extreme importance because on the one hand it has rendered previous theories of integration virtually obsolete, and on the other hand it has not been replaced with a significantly different, better theory. Most subsequent important investigations of integration theory have extended or illuminated Lebesgues work.
  In fact, as is so often the case in a new field of mathematics, many of the best consequences were given by the originator. For example,Lebesgues dominated convergence theorem, Lebesgues increasing convergence theorem, the theory of the Lebesgue function of the Cantor ternary set, and Lebesgues theory of differentiation of indefinite integrals.
  Naturally, many splendid textbooks have been produced in this area.I shall list some of these below. They axe quite varied in their approach to the subject. My aims in the present book are as follows.
  1. To present a slow introduction to Lebesgue integration Most books nowadays take the opposite tack. I have no argument with their approach, except that I feel that many students who see only a very rapid approach tend to lack strong intuition about measure and integration. That is why I have made Chapter 2, "Lebesgue measure on Rn,"so lengthy and have restricted it to Euclidean space, and why I have (somewhat inconveniently) placed Chapter 3, "Invaxiance of Lebesgue measure," before Pubinis theorem. In my approach I have omitted much important material, for the sake of concreteness. As the title of the book signifies, I restrict attention almost entirely to Euclidean space.
  2. To deal with n-dimensional spaces from the outset. I believe this is preferable to one standard approach to the theory which first thoroughly treats integration on the real line and then generalizes. There are several reasons for this belief. One is quite simply that significant figures are frequently easier to sketch in IRe than in R1! Another is that some things in IR1 are so special that the generalization to Rn is not clear; for example, the structure of the most general open set in R1 is essentially trivial —— it must be a disjoint union of open intervals (see Problem 2.6). A third is that coping with the n-dimensional case from the outset causes the learner to realize that it is not significantly more difficult than the one-dimensional case as far as many aspects of integration are concerned.
  3. To provide a thorough treatment of Fourier analysis. One of the triumphs of Lebesgue integration is the fact that it provides definitive answers to many questions of Fourier analysis. I feel that without a thorough study of this topic the student is simply not well educated in integration theory. Chapter 13 is a very long one on the Fourier transform in several variables, and Chapter 14 also a very long one on Fourier series in one variable.

歐氏空間上的勒貝格積分(修訂版)(英文版) [Lebesgue Integration on Euclidean Space Revised Edition] 下載 mobi epub pdf txt 電子書

歐氏空間上的勒貝格積分(修訂版)(英文版) [Lebesgue Integration on Euclidean Space Revised Edition] pdf epub mobi txt 電子書 下載
想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

類似2

評分

確實是不錯確實是不錯

評分

更加理論化,習題非常難做等特點. 學習不到一個

評分

勒貝格積分

評分

很不錯的書,內容很詳細,還會繼續關注的!

評分

的內容就像“樹上垂下來的果子,需要跳一跳纔能

評分

老師推薦的教材,學習勒貝格積分的,很喜歡!

評分

更加理論化,習題非常難做等特點. 學習不到一個

評分

本科階段最難學的課程之一. 許多數學本科學生都對這門課程不感興趣,甚至望而生畏. 這不是因為

類似圖書 點擊查看全場最低價

歐氏空間上的勒貝格積分(修訂版)(英文版) [Lebesgue Integration on Euclidean Space Revised Edition] pdf epub mobi txt 電子書 下載


分享鏈接


去京東購買 去京東購買
去淘寶購買 去淘寶購買
去噹噹購買 去噹噹購買
去拼多多購買 去拼多多購買


歐氏空間上的勒貝格積分(修訂版)(英文版) [Lebesgue Integration on Euclidean Space Revised Edition] bar code 下載
扫码下載





相關圖書




本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 windowsfront.com All Rights Reserved. 靜流書站 版權所有