数学分析教程(上册)

数学分析教程(上册) pdf epub mobi txt 电子书 下载 2025

李忠,方丽萍 著
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 高等教育出版社
ISBN:9787040238952
版次:1
商品编码:10000078
包装:平装
丛书名: 普通高等教育“十一五”国家级规划教材
开本:32开
出版时间:2008-05-01
页数:489
正文语种:中文

具体描述

编辑推荐

《数学分析教程(上册)》:简明教材,教学基础课程系列。

内容简介

《数学分析教程(上册)》是为综合性大学与师范类院校的数学类专业编写的数学分析教材,全书共分上、下两册。上册的内容为一元微积分学与多元微分学,下册的内容为多元积分学、无穷级数、广义积分及傅氏级数等。作者根据多年的教学实践经验,对数学分析的内容体系作了精心的构架与调整,分散了难点,突出了分析学的基础知识与基本训练,使全书内容深入浅出、平实自然、有用有趣。

内页插图

目录

绪论
第一章 函数与极限
1 实数
1.有理数域
2.无理数
3.实数域及其完备性
4.数轴与绝对值不等式
习题1.1
2 函数的概念
1.函数的定义与例
2.反函数与复合函数
3.周期函数
4.有界函数与无界函数
5.初等函数
习题1.2
3 序列的极限
1.序列极限的定义
2.极限的四则运算
3.实数域完备性的表述
习题1.3
4 序列极限的基本性质
1.子序列的极限
2.夹逼定理
3.极限不等式
4.一个重要的极限
5.无穷小量与无穷大量
习题1.4
5 函数的极限
1.极限的定义
2.单侧极限
3.当χ趋于无穷时的极限
4.无穷小量与极限的四则运算
习题1.5
6 函数极限的性质
1.函数极限与序列极限
2.夹逼定理
3.极限不等式
习题1.6
7 连续函数
1.连续函数的定义
2.间断点及其分类
3.连续函数的四则运算
4.复合函数与严格单调函数的连续性
5.初等函数的连续性
习题1.7
8 闭区间上连续函数的性质
1.区间套原理与波尔查诺一魏尔斯特拉斯定理
2.中间值定理
3.有界性定理
4.最大值与最小值定理
5.反函数的连续性
6.附注
习题1.8

第二章 导数与微分
1 导数的概念及其四则运算
1.导数的定义
2.可导与连续
3.导数的四则运算
4.函数的可导性
习题2.1
2 复合函数与反函数的导数
1.复合函数的导数
2.隐函数求导法
3.反函数的导数
习题2.2
3 微分的概念
1.无穷小量阶的比较
2.微分的概念
习题2.3
4 高阶导数与高阶微分
习题2.4
5 一阶微分的形式不变性
1.一阶微分的形式不变性
2.参变量函数微分法
习题2.5

第三章 微分中值定理
1 拉格朗日中值定理
1.费马定理与罗尔定理
2.拉格朗日中值定理
3.拉格朗日中值定理的一些直接应用
习题3.1
2 柯西中值定理与洛必达法则
1.柯西中值定理
2.洛必达法则
3.其他未定式的极限
习题3.2
3 极值问题
1.极值点与稳定点
2.稳定点是极值点的充分条件
3.最大(小)值问题
4.几个实例
习题3.3
4 泰勒公式
1.局部泰勒展开式
2.泰勒展开式中的余项
习题3.4
5 函数的凸凹性及函数作图
1.函数的凸凹性
2.渐近线
3.函数的作图
习题3.5

第四章 不定积分
1 原函数与不定积分
1.原函数
2.基本不定积分表
3.不定积分的线性法则
4.求不定积分的意义
习题4.1
2 不定积分换元法则
1.第一换元法则
2.第二换元法则
习题4.2
3 分部积分法
习题4.3
4 有理函数的积分
1.有理式与部分分式
2.部分分式的不定积分
3.有理式积分的一般步骤
习题4.4
5 不定积分的有理化方法
1.三角函数的有理式
……
第五章 再论实数与连续函数
第六章 定积分
第七章 多元函数微分学

前言/序言

数学分析,又称无穷小分析,其主要内容是微积分。
作为大学的一门课程,“数学分析”是数学专业中最重要的基础课之一,也是数学专业教学中的“重头戏”。
这套教材根据我们在北京大学与北京理工大学长期讲授数学分析课的实际经验编写而成。我们编写此书的基本想法如下:
第一,让微积分学变得更平实自然。
大家知道,在牛顿与莱布尼茨创立微积分学之后,数学家们经过一百多年的努力,才逐步为微积分奠定了坚实的逻辑基础。这主要是柯西与魏尔斯特拉斯建立的极限理论,以及由魏尔斯特拉斯、波尔查诺、康托尔与戴德金等人所建立的实数理论。
在多数传统数学分析的教材中,讲授的次序恰好与历史发展次序相反:一般是先讲实数,再讲极限与连续,然后再讲微积分本身。这样做的好处是逻辑严谨,体系完整。但这样做也带来一些明显的问题:在课程开始的相当长的一段时间里,所讲的内容,远离了微积分的基本思想与核心内容,这会使初学者感到十分困惑,不知道这样做的目的。另外,这样做就迫使初学者在一开始就不得不面临着一系列的复杂讨论:诸如戴德金分割、上下确界存在定理、区间套定理、柯西收敛原理、聚点原理、有限覆盖定理,一致连续等等。一般说来,对于仅有初等数学知识的一年级学生而言,这些内容是艰深的,有相当一部分人会感到困难,甚至有人可能因此而对数学分析失去兴趣。

用户评价

评分

7,Banach伴随函子、Banach伴随算子、正合序列、赋范线性空间的完备化、完备化的存在性与唯一性、代数张量积、泛函的张量积、Banach张量积、张量积的存在性与唯一性。

评分

以前科大的线性代数是李炯生和查建国两位老师写的线性代数,现在改用李尚志老师的线性代数,翻了一下李老师的线性代数,应该说这本书写的很好懂,甚至比很多工科的线性代数更好懂,题目也比较有层次感,不像以前那本书,每道题都不容易,所以做题目前需要用其它的书上的题目铺垫一下,而且内容也相当足够,以我愚见,如果能再增加一章多维仿射与射影几何和一章张量代数,那就完美了。

评分

iR《l数学分rz析教s程(w上册S)》C(ET李忠,方JF丽萍)N【R摘要

评分

6,Riemann度量、Riemann流形、Riemann乘积流形、Riemann子流形、Riemann浸没、复射影空间、齐性Riemann空间、Steenrod定理、联络、Levi-Civita联络、Riemann子流形的联络。

评分

Israel Gelfand,Lectures on Linear Algebra。(这本书看看作者就知道了。Gelfand是第一届Wolf数学奖得主,Kolmogorov的学生,年纪和陈老、华老差不多,现在还活着,在美国的Rutgers大学,他最出名的工作是建立了泛函分析中的赋范环理论,在拓扑学、微分方程、李群李代数、表示论、生物数学方面也有开创性的贡献,比如说Atiyah-Singer指标定理,其实最早是他得出的。自Kolmogorov去世以后,大概只有Gelfand还能算是全能数学家,未来还会不会有这样的全能数学家,这是个问题。不过我要指出,这本书不是一本线性代数的入门书,40年代的俄罗斯数学系,学生现学习两学期的高扥代数,主要是方程式论和一些基本的线性代数,再上一学期的线性代数,这本书的背景就是这样的。但是如果有人学了简明线性代数想强化一下自己的基础,或者说学了线性代数,想复习一下,这本书是很合适的,这本书既简明又清晰,很快可以看一遍,最后一章给出了一个张量代数的最简单的介绍。对于这门课的重要性,Gelfand有个说法,翻译过来大概是“一切数学都是某种形式的线性代数”。)

评分

《数学分析rZ教程e(上册w)》(C李忠,方L丽萍)【摘Q要

评分

就是有点旧

评分

很喜欢,深入浅出,简洁明了,习题难度适中,书中特别注重了数学思想和数学方法在分析学中作用,很不错!!!值得推荐,更值得好好读一读,应该很受益!!

评分

i《l数学分rz析教s程(w上册)》C(AE李忠,方JF丽萍)N【R摘要

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 windowsfront.com All Rights Reserved. 静流书站 版权所有