YL7167 9787111552970 9787111552963
复分析
EliasM.Stein、RamiShakarchi所著的《复分析》由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。本书已被哈佛大学和加利福尼亚理工学院选为教材。
第1 章 复分析预备知识 1
1 复数和复平面 1
1. 1 基本性质 1
1. 2 收敛性 3
1. 3 复平面中的集合 4
2 定义在复平面上的函数 5
2. 1 连续函数 5
2. 2 全纯函数 6
2. 3 幂级数 10
3 沿曲线的积分 13
4 练习 17
第2 章 柯西定理及其应用 23
1 Goursat 定理 24
2 局部原函数的存在和圆盘内的柯西定理 26
3 一些积分估值 29
4 柯西积分公式 32
5 应用 37
5. 1 Morera 定理 37
5. 2 全纯函数列 37
5. 3 按照积分定义全纯函数 39
5. 4 Schwarz 反射原理 40
5. 5 Runge 近似定理 42
6 练习 44
7 问题 47
第3 章 亚纯函数和对数 50
1 零点和极点 51
2 留数公式 54
2. 1 例子 55
3 奇异性与亚纯函数 58
4 辐角原理与应用 62
5 同伦和单连通区域 65
6 复对数 68
7 傅里叶级数和调和函数 70
8 练习 72
9 问题 75
第4 章 傅里叶变换 78
1 F 类 79
2 作用在 F 类上的傅里叶变换 80
3 Paley.Wiener 定理 85
4 练习 90
5 问题 94
第5 章 整函数 96
1 Jensen 公式 97
2 有限阶函数 99
3 无穷乘积 101
3. 1 一般性 101
3. 2 例子 正弦函数的乘积公式 102
4 Weierstrass 无穷乘积 104
5 Hadamard 因子分解定理 106
6 练习 110
7 问题 113
第6 章 Gamma 函数和 Zeta 函数 115
1 Gamma 函数 115
1. 1 解析延拓 116
1. 2 Γ 函数的性质 118
2 Zeta 函数 122
2. 1 泛函方程和解析延拓 122
3 练习 127
4 问题 131..........
引言
1傅里叶级数:完备化
2连续函数的极限
3曲线的长度
4微分与积分
5测度问题
第1章测度论
1预备知识
2外测度
3可测集与勒贝格测度
4可测函数
4 1定义与基本性质
4 2用简单函数或阶梯函数逼近
4 3李特尔伍德三大原理
5+ Brunn-Minkowski不等式
6习题
7问题
第2章积分理论
1勒贝格积分:基本性质与收敛定理
2可积函数空间F
3 Fubini定理
3 1定理的叙述与证明
3 2 Fubi¨ni定理的应用
4+ 傅里叶反演公式
5习题
6问题
第3章微分与积分
1积分的微分
1 1 哈代一李特尔伍德极大函数
1 2勒贝格微分定理
2好的核与恒同逼近
第4章希尔伯特空间简介
第5章希尔伯特空间:几个例子
第6章抽象测度和积分理论
1 3延拓定理
2测度空间上的积分
3例子
3 1乘积测度和一般的Fubi¨ni定理
3 2极坐标的积分公式
33R上的博雷尔测度和勒贝格一靳蒂尔切斯积分
4测度的绝对连续性
4 1带号测度
4 2绝对连续性
5+遍历定理
5 1平均遍历定理
5 2极大遍历定理
5 3逐点遍历定理
5 4遍历保测变换
6+附录:谱定理
6 1定理的叙述
6 2正算子
6 3定理的证明
6 4谱
7习题
8问题
第7章豪斯多夫测度和分形
1豪斯多夫测度
2豪斯多夫维数
2 1例子
2 2自相似
3空间填充曲线
3 1 四次区间和二进正方形
3 2二进对应
3 3佩亚诺映射的构造
4' Besicovitch集和正则性
4 1拉东变换
4 2当d≥3时集合的正则性
4 3 Besicovitch集有维数2
4 4 Besicovitch集的构造
5习题
6问题
注记和参考
符号索引
参考文献
评分
评分
评分
评分
评分
评分
评分
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等,本站所有链接都为正版商品购买链接。
© 2025 windowsfront.com All Rights Reserved. 静流书站 版权所有