發表於2024-12-22
代數(英文版.第2版) (美)Michael Artin|198897 pdf epub mobi txt 電子書 下載
書名: | 代數(英文版.第2版)|198897 |
圖書定價: | 79元 |
圖書作者: | (美)Michael Artin |
齣版社: | 機械工業齣版社 |
齣版日期: | 2012/1/1 0:00:00 |
ISBN號: | 9787111367017 |
開本: | 16開 |
頁數: | 543 |
版次: | 2-1 |
作者簡介 |
Michael Artin 當代領袖型代數學傢與代數幾何學傢之一,美國麻省理工學院數學係榮譽退休教授。1990年至1992年,曾擔任美國數學學會主席。由於他在交換代數與非交換代數、環論以及現代代數幾何學等方麵做齣的貢獻,2002年獲得美國數學學會頒發的Leroy P.Steele終身成就奬。Artin的主要貢獻包括他的逼近定理、在解決沙法列維奇-泰特猜測中的工作以及為推廣“概形”而創建的“代數空間”概念。 |
內容簡介 |
《代數(英文版.第2版)》由著名代數學傢與代數幾何學傢Michael Artin所著,是作者在代數領域數十年的智慧和經驗的結晶。書中既介紹瞭矩陣運算、群、嚮量空間、綫性算子、對稱等較為基本的內容,又介紹瞭環、模型、域、伽羅瓦理論等較為高深的內容。本書對於提高數學理解能力,增強對代數的興趣是非常有益處的。此外,本書的可閱讀性強,書中的習題也很有針對性,能讓讀者很快地掌握分析和思考的方法。 作者結閤這20年來的教學經曆及讀者的反饋,對本版進行瞭全麵更新,更強調對稱性、綫性群、二次數域和格等具體主題。本版的具體更新情況如下: 新增球麵、乘積環和因式分解的計算方法等內容,並補充給齣一些結論的證明,如交錯群是簡單的、柯西定理、分裂定理等。 修訂瞭對對應定理、SU2 錶示、正交關係等內容的討論,並把綫性變換和因子分解都拆分為兩章來介紹。 新增大量習題,並用星號標注齣具有挑戰性的習題。 《代數(英文版.第2版)》在麻省理工學院、普林斯頓大學、哥倫比亞大學等著名學府得到瞭廣泛采用,是代數學的經典教材之一。 |
目錄 |
《代數(英文版.第2版)》 Preface 1 Matrices 1.1 The Basic Operations 1.2 Row Reduction 1.3 The Matrix Transpose 1.4 Determinants 1.5 Permutations 1.6 Other Formulas for the Determinant Exercises 2 Groups 2.1 Laws of Composition 2.2 Groups and Subgroups 2.3 Subgroups of the Additive Group of Integers. 2.4 Cyclic Groups 2.5 Homomorphisms 2.6 Isomorphisms 2.7 Equivalence Relations and Partitions 2.8 Cosets 2.9 Modular Arithmetic 2.10 The Correspondence Theorem 2.11 Product Groups 2.12 Quotient Groups Exercises 3 Vector Spaces 3.1 Subspaces of Rn 3.2 Fields 3.3 Vector Spaces 3.4 Bases and Dimension 3.5 Computing with Bases 3.6 Direct Sums 3.7 Infinite-Dimensional Spaces Exercises 4 Linear Operators 4.1 The Dimension Formula 4.2 The Matrix of a Linear Transformation 4.3 Linear Operators 4.4 Eigenvectors 4.5 The Characteristic Polynomial 4.6 Triangular and Diagonal Forms 4.7 Jordan Form Exercises 5 Applications of Linear Operators 5.1 Orthogonal Matrices and Rotations 5.2 Using Continuity 5.3 Systems of Differential Equations 5.4 The Matrix Exponential Exercises 6 Symmetry 6.1 Symmetry of Plane Figures 6.2 Isometries 6.3 Isometries of the Plane 6.4 Finite Groups of Orthogonal Operators on the Plane 6.5 Discrete Groups of Isometries 6.6 Plane Crystallographic Groups 6.7 Abstract Symmetry: Group Operations 6.8 The Operation on Cosets 6.9 The Counting Formula 6.10 Operations on Subsets 6.11 Permutation Representations 6.12 Finite Subgroups of the Rotation Group Exercises 7 More Group Theory 7.1 Cayley's Theorem 7.2 The Class Equation 7.3 p-Groups 7.4 The Class Equation of the Icosahedral Group 7.5 Conjugation in the Symmetric Group 7.6 Normalizers 7.7 The Sylow Theorems 7.8 Groups of Order 12 7.9 The Free Group 7.10 Generators and Relations 7.11 The Todd-Coxeter Algorithm Exercises 8 Bilinear Forms 8.1 Bilinear Forms 8.2 Symmetric Forms 8.3 Hermitian Forms 8.4 Orthogonality 8.5 Euclidean Spaces and Hermitian Spaces 8.6 The Spectral Theorem 8.7 Conics and Quadrics 8.8 Skew-Symmetric Forms 8.9 Summary Exercises 9 Linear Groups 9.1 The Classical Groups 9.2 Interlude: Spheres 9.3 The Special Unitary Group SU2 9.4 The Rotation Group S03 9.5 One-Parameter Groups 9.6 The Lie Algebra 9.7 Translation in a Group 9.8 Normal Subgroups of SL2 Exercises 10 Group Representations 10.1 Definitions 10.2 Irreducible Representations 10.3 Unitary Representations 10.4 Characters 10.5 One-Dimensional Characters 10.6 The Regular Representation 10.7 Schur's Lemma 10.8 Proof of the Orthogonality Relations 10.9 Representations of SU2 Exercises 11 Rings 11.1 Definition of a Ring 11.2 Polynomial Rings 11.3 Homomorphisms and Ideals 11.4 Quotient Rings 11.5 Adjoining Elements 11.6 Product Rings 11.7 Fractions 11.8 Maximal Ideals 11.9 Algebraic Geometry Exercises 12 Factoring 12.1 Factoring Integers 12.2 Unique Factorization Domains 12.3 Gauss's Lemma 12.4 Factoring Integer Polynomials 12.5 Gauss Primes Exercises 13 Quadratic Number Fields 13.1 Algebraic Integers 13.2 Factoring Algebraic Integers 13.3 Ideals in Z 13.4 Ideal Multiplication 13.5 Factoring Ideals 13.6 Prime Ideals and Prime Integers 13.7 Ideal Classes 13.8 Computing the Class Group 13.9 Real Quadratic Fields 13.10 About Lattices Exercises 14 Linear Algebra in a Ring 14.1 Modules 14.2 Free Modules 14.3 Identities 14.4 Diagonalizing Integer Matrices 14.5 Generators and Relations 14.6 Noetherian Rings 14.7 Structure of Abelian Groups 14.8 Application to Linear Operators 14.9 Polynomial Rings in Several Variables Exercises 15 Fields 15.1 Examples of Fields 15.2 Algebraic and Transcendental Elements 15.3 The Degree of a Field Extension 15.4 Finding the Irreducible Polynomial 15.5 Ruler and Compass Constructions 15.6 Adjoining Roots 15.7 Finite Fields 15.8 Primitive Elements 15.9 Function Fields 15.10 The Fundamental Theorem of Algebra Exercises 16 Galois Theory 16.1 Symmetric Functions 16.2 The Discriminant 16.3 Splitting Fields 16.4 Isomorphisms of Field Extensions 16.5 Fixed Fields 16.6 Galois Extensions 16.7 The Main Theorem 16.8 Cubic Equations 16.9 Quartic Equations 16.10 Roots of Unity 16.11 Kummer Extensions 16.12 Quintic Equations Exercises APPENDIX Background Material A.1 About Proofs A.2 The Integers A.3 Zorn's Lemma A.4 The Implicit Function Theorem Exercises Bibliography Notation Index |
代數(英文版.第2版) (美)Michael Artin|198897 pdf epub mobi txt 電子書 下載