AI聖經!深度學習領域奠基性的經典暢銷書!長期位居美國ya馬遜AI和機器學習類圖書榜首!所有數據科學傢和機器學習從業者的bi讀圖書!特斯拉CEO埃隆·馬斯剋等國內外眾多專傢推jian!
深度學習是機器學習的一個分支,它能夠使計算機通過層次概念來學習經驗和理解世界。因為計算機能夠從經驗中獲取知識,所以不需要人類來形式化地定義計算機需要的所有知識。層次概念允許計算機通過構造簡單的概念來學習復雜的概念,而這些分層的圖結構將具有很深的層次。本書會介紹深度學習領域的許多主題。
本書囊括瞭數學及相關概念的背景知識,包括綫性代數、概率論、信息論、數值優化以及機器學習中的相關內容。同時,它還介紹瞭工業界中實踐者用到的深度學習技術,包括深度前饋網絡、正則化、優化算法、捲積網絡、序列建模和實踐方法等,並且調研瞭諸如自然語言處理、語音識彆、計算機視覺、在綫推薦係統、生物信息學以及視頻遊戲方麵的應用。最後,本書還提供瞭一些研究方嚮,涵蓋的理論主題包括綫性因子模型、自編碼器、錶示學習、結構化概率模型、濛特卡羅方法、配分函數、近似推斷以及深度生成模型。
封麵特色:由藝術傢DanielAmbrosi提供的中央公園杜鵑花步道夢幻景觀。在Ambrosi的億級像素全景圖上,應用JosephSmarr(Google)和ChirsLamb(NVIDIA)修改後的GoogleDeepDream開源程序,創造瞭DanielAmbrosi的“幻景”。
《深度學習》由全球知名的三位專傢IanGoodfellow、YoshuaBengio和AaronCourville撰寫,是深度學習領域奠基性的經典教材。全書的內容包括3個部分:第1部分介紹基本的數學工具和機器學習的概念,它們是深度學習的預備知識;第2部分係統深入地講解現今已成熟的深度學習方法和技術;第3部分討論某些具有前瞻性的方嚮和想法,它們被公認為是深度學習未來的研究重點。
《深度學習》適閤各類讀者閱讀,包括相關專業的大學生或研究生,以及不具有機器學習或統計背景、但是想要快速補充深度學習知識,以便在實際産品或平颱中應用的軟件工程師。
IanGoodfellow,榖歌公司(Google)的研究科學傢,2014年濛特利爾大學機器學習博士。他的研究興趣涵蓋大多數深度學習主題,特彆是生成模型以及機器學習的安全和隱私。IanGoodfellow在研究對抗樣本方麵是一位有影響力的早期研究者,他發明瞭生成式對抗網絡,在深度學習領域貢獻卓越。
YoshuaBengio,濛特利爾大學計算機科學與運籌學係(DIRO)的教授,濛特利爾學習算法研究所(MILA)的負責人,CIFAR項目的共同負責人,加拿大統計學習算法研究主席。YoshuaBengio的主要研究目標是瞭解産生智力的學習原則。他還教授“機器學習”研究生課程(IFT6266),並培養瞭一大批研究生和博士後。
AaronCourville,濛特利爾大學計算機科學與運籌學係的助理教授,也是LISA實驗室的成員。目前他的研究興趣集中在發展深度學習模型和方法,特彆是開發概率模型和新穎的推斷方法。AaronCourville主要專注於計算機視覺應用,在其他領域,如自然語言處理、音頻信號處理、語音理解和其他AI相關任務方麵也有所研究。
中文版審校者簡介
張誌華,北京大學數學科學學院統計學教授,北京大學大數據研究中心和北京大數據研究院數據科學教授,主要從事機器學習和應用統計學的教學與研究工作。
譯者簡介
趙申劍,上海交通大學計算機係碩士研究生,研究方嚮為數值優化和自然語言處理。
黎彧君,上海交通大學計算機係博士研究生,研究方嚮為數值優化和強化學習。
符天凡,上海交通大學計算機係碩士研究生,研究方嚮為貝葉斯推斷。
李凱,上海交通大學計算機係博士研究生,研究方嚮為博弈論和強化學習。
《深度學習》由該領域的三位專傢撰寫,是目前該領域唯1的綜閤性圖書。它為正在進入該領域的軟件工程師和學生提供瞭廣泛的視角和基礎的數學知識,同時也可以為研究者提供參考。
——ElonMusk,OpenAI聯閤主席,特斯拉和SpaceX共同創始人兼首席執行官
這是深度學習的權wei教科書,由該領域的主要貢獻者撰寫。此書內容非常清晰、全麵並且權wei。閱讀這本書,你可以知道深度學習的由來、它的好處以及它的未來。
——GeoffreyHinton,多倫多大學榮譽退休教授,Google傑齣研究科學傢
zui近十年以來,深度學習成為瞭風靡全球的技術。學生、從業人員和教師都需要這樣一本包含基本概念、實踐方法和高級研究課題的教科書。這是深度學習領域第1本綜閤性的教科書,由幾位極具創意和多産的研究人員撰寫。這本書將成為經典。
——YannLeCun,Facebook人工智能研究院院長,紐約大學計算機科學、數據科學與神經科學教授
深度學習的中文譯本忠實客觀地錶述瞭英文原稿的內容。本書三位共同作者是一個老中青三代結閤的整體,既有深度學習領域的奠基人,也有處於研究生涯中期的領域中堅,更有領域裏近年湧現的新星。所以書作結構行文很好地考慮到瞭處於研究生涯各個不同階段的學生和研究人員的需求,是一本非常好的關於深度學習的教科書。
深度學習近年在學術界和産業界都取得瞭極大的成功,但誠如本書作者所說,深度學習是創建人工智能係統的一個重要的方法,但不是全部的方法。期望在人工智能領域有所作為的研究人員,更可以通過本書充分思考深度學習和傳統機器學習和人工智能算法的聯係和區彆,共同推進本領域的發展。
——微軟研究院首席研究員華剛博士
這是一本還在寫作階段就被開發、研究,工程人員極大關注的深度學習教科書。它的齣版錶明瞭我們進入瞭一個係統化理解和組織深度學習框架的新時代。這本書從淺入深介紹瞭基本數學、機器學習經驗,以及現階段深度學習理論和發展。它能幫助AI技術愛好者和從業人員在三位專傢學者的思維帶領下全方位瞭解深度學習。
——騰訊優圖傑齣科學傢、香港中文大學教授賈佳亞
深度學習代錶瞭我們這個時代的人工智能技術。這部由該領域專業的幾位學者Goodfellow、Bengio、Courville撰寫的題為《深度學習》的著作,涵蓋瞭深度學習的基礎與應用、理論與實踐等各個方麵的主要技術,觀點鮮明,論述深刻,講解詳盡,內容充實。相信這是每一位關注深度學習人士的必讀書目和必備寶典。感謝張誌華教授等的辛勤審校,使這部大作能夠這麼快與中文讀者見麵。
——華為諾亞方舟實驗室主任,北京大學、南京大學客座教授,IEEEFellow李航
從基礎前饋神經網絡到深度生成模型,從數學模型到極好實踐,此書覆蓋深度學習的各個方麵。《深度學習》是當下zui適閤的入門書籍,強烈推薦給此領域的研究者和從業人員。
——亞馬xun主任科學傢、ApacheMXNet發起人之一李沐
齣自三位深度學習zui前沿權wei學者的教科書一定要在案前放一本。本書的第二部分是精華,對深度學習的基本技術進行瞭深入淺齣的精彩闡述。
——ResNet作者之一、Face++首席科學傢孫劍
過去十年裏,深度學習的廣泛應用開創瞭人工智能的新時代。這本教材是深度學習領域有重要影響的幾位學者共同撰寫。它涵蓋瞭深度學習的主要方嚮,為想進入該領域的研究人員,工程師,以及初學者提供瞭一個很好的係統性教材。
——香港中文大學信息工程係主任湯曉鷗教授
AI聖經!此書是所有數據科學傢和機器學習從業者要在這個快速增長的下一代技術領域立足的必讀書籍。
——DanielD.Gutierrez,知名媒體機構insideBIGDATA
這是一本教科書,又不止是一本教科書。任何對深度學習感興趣的讀者,本書在很長一段時間裏,都將是你能獲得的zui全麵係統的資料,以及思考並真正推進深度學習産業應用、構建智能化社會框架的絕jia理論起點。
——新智元創始人兼CEO楊靜
第1章引言1
11本書麵嚮的讀者7
12深度學習的曆史趨勢8
121神經網絡的眾多名稱和命運變遷8
122與日俱增的數據量12
123與日俱增的模型規模13
124與日俱增的精度、復雜度和對現實世界的衝擊15
第1部分應用數學與機器學習基礎
第2章綫性代數19
21標量、嚮量、矩陣和張量19
22矩陣和嚮量相乘21
23單位矩陣和逆矩陣22
24綫性相關和生成子空間23
25範數24
26特殊類型的矩陣和嚮量25
27特徵分解26
28奇異值分解28
29Moore-Penrose僞逆28
210跡運算29
211行列式30
212實例:主成分分析30
第3章概率與信息論34
31為什麼要使用概率34
32隨機變量35
33概率分布36
331離散型變量和概率質量函數36
332連續型變量和概率密度函數36
34邊緣概率37
35條件概率37
36條件概率的鏈式法則38
37獨立性和條件獨立性38
38期望、方差和協方差38
39常用概率分布39
391Bernoulli分布40
392Multinoulli分布40
393高斯分布40
394指數分布和Laplace分布41
395Dirac分布和經驗分布42
396分布的混閤42
310常用函數的有用性質43
311貝葉斯規則45
312連續型變量的技術細節45
313信息論47
314結構化概率模型49
第4章數值計算52
41上溢和下溢52
42病態條件53
43基於梯度的優化方法53
431梯度之上:Jacobian和Hessian矩陣56
44約束優化60
45實例:綫性最小二乘61
第5章機器學習基礎63
51學習算法63
511任務T63
512性能度量P66
513經驗E66
514示例:綫性迴歸68
52容量、過擬閤和欠擬閤70
521沒有免費午餐定理73
522正則化74
53超參數和驗證集76
531交叉驗證76
54估計、偏差和方差77
541點估計77
542偏差78
543方差和標準差80
544權衡偏差和方差以最小化均方誤差81
545一緻性82
55最大似然估計82
551條件對數似然和均方誤差84
552最大似然的性質84
56貝葉斯統計85
561最大後驗(MAP)估計87
57監督學習算法88
571概率監督學習88
572支持嚮量機88
573其他簡單的監督學習算法90
58無監督學習算法91
581主成分分析92
582k-均值聚類94
59隨機梯度下降94
510構建機器學習算法96
511促使深度學習發展的挑戰96
5111維數災難97
5112局部不變性和平滑正則化97
5113流形學習99
第2部分深度網絡:現代實踐
第6章深度前饋網絡105
61實例:學習XOR107
62基於梯度的學習110
621代價函數111
622輸齣單元113
63隱藏單元119
631整流綫性單元及其擴展120
632logisticsigmoid與雙麯正切函數121
633其他隱藏單元122
64架構設計123
641萬能近似性質和深度123
642其他架構上的考慮126
65反嚮傳播和其他的微分算法126
651計算圖127
652微積分中的鏈式法則128
653遞歸地使用鏈式法則來實現反嚮傳播128
654全連接MLP中的反嚮傳播計算131
655符號到符號的導數131
656一般化的反嚮傳播133
657實例:用於MLP訓練的反嚮傳播135
658復雜化137
659深度學習界以外的微分137
6510高階微分138
66曆史小記139
第7章深度學習中的正則化141
71參數範數懲罰142
711L2參數正則化142
712L1正則化144
72作為約束的範數懲罰146
73正則化和欠約束問題147
74數據集增強148
75噪聲魯棒性149
751嚮輸齣目標注入噪聲150
76半監督學習150
77多任務學習150
78提前終止151
79參數綁定和參數共享156
791捲積神經網絡156
710稀疏錶示157
711Bagging和其他集成方法158
712Dropout159
713對抗訓練165
714切麵距離、正切傳播和流形正切分類器167
第8章深度模型中的優化169
81學習和純優化有什麼不同169
811經驗風險最小化169
812代理損失函數和提前終止170
813批量算法和小批量算法170
82神經網絡優化中的挑戰173
821病態173
822局部極小值174
823高原、鞍點和其他平坦區域175
824懸崖和梯度爆炸177
825長期依賴177
826非精確梯度178
827局部和全局結構間的弱對應178
828優化的理論限製179
83基本算法180
831隨機梯度下降180
832動量181
833Nesterov動量183
84參數初始化策略184
85自適應學習率算法187
851AdaGrad187
852RMSProp188
853Adam189
854選擇正確的優化算法190
86二階近似方法190
861牛頓法190
862共軛梯度191
863BFGS193
87優化策略和元算法194
871批標準化194
872坐標下降196
873Polyak平均197
874監督預訓練197
875設計有助於優化的模型199
876延拓法和課程學習199
第9章捲積網絡201
91捲積運算201
92動機203
93池化207
94捲積與池化作為一種無限強的先驗210
95基本捲積函數的變體211
96結構化輸齣218
97數據類型219
98高效的捲積算法220
99隨機或無監督的特徵220
910捲積網絡的神經科學基礎221
911捲積網絡與深度學習的曆史226
第10章序列建模:循環和遞歸網絡227
101展開計算圖228
102循環神經網絡230
1021導師驅動過程和輸齣循環網絡232
1022計算循環神經網絡的梯度233
1023作為有嚮圖模型的循環網絡235
1024基於上下文的RNN序列建模237
103雙嚮RNN239
104基於編碼-解碼的序列到序列架構240
105深度循環網絡242
106遞歸神經網絡243
107長期依賴的挑戰244
108迴聲狀態網絡245
109滲漏單元和其他多時間尺度的策略247
1091時間維度的跳躍連接247
1092滲漏單元和一係列不同時間尺度247
1093刪除連接248
1010長短期記憶和其他門控RNN248
10101LSTM248
10102其他門控RNN250
1011優化長期依賴251
10111截斷梯度251
10112引導信息流的正則化252
1012外顯記憶253
第11章實踐方法論256
111性能度量256
112默認的基準模型258
113決定是否收集更多數據259
114選擇超參數259
1141手動調整超參數259
1142自動超參數優化算法262
1143網格搜索262
1144隨機搜索263
1145基於模型的超參數優化264
115調試策略264
116示例:多位數字識彆267
第12章應用269
121大規模深度學習269
1211快速的CPU實現269
1212GPU實現269
1213大規模的分布式實現271
1214模型壓縮271
1215動態結構272
1216深度網絡的專用硬件實現273
122計算機視覺274
1221預處理275
1222數據集增強277
123語音識彆278
124自然語言處理279
1241n-gram280
1242神經語言模型281
1243高維輸齣282
1244結閤n-gram和神經語言模型286
1245神經機器翻譯287
1246曆史展望289
125其他應用290
1251推薦係統290
1252知識錶示、推理和迴答292
第3部分深度學習研究
第13章綫性因子模型297
131概率PCA和因子分析297
132獨立成分分析298
133慢特徵分析300
134稀疏編碼301
135PCA的流形解釋304
第14章自編碼器306
141欠完備自編碼器306
142正則自編碼器307
1421稀疏自編碼器307
1422去噪自編碼器309
1423懲罰導數作為正則309
143錶示能力、層的大小和深度310
144隨機編碼器和解碼器310
145去噪自編碼器詳解311
1451得分估計312
1452曆史展望314
146使用自編碼器學習流形314
147收縮自編碼器317
148預測稀疏分解319
149自編碼器的應用319
第15章錶示學習321
151貪心逐層無監督預訓練322
1511何時以及為何無監督預訓練有效有效323
152遷移學習和領域自適應326
153半監督解釋因果關係329
154分布式錶示332
155得益於深度的指數增益336
156提供發現潛在原因的綫索337
第16章深度學習中的結構化概率模型339
161非結構化建模的挑戰339
162使用圖描述模型結構342
1621有嚮模型342
1622無嚮模型344
1623配分函數345
1624基於能量的模型346
1625分離和d-分離347
1626在有嚮模型和無嚮模型中轉換350
1627因子圖352
163從圖模型中采樣353
164結構化建模的優勢353
165學習依賴關係354
166推斷和近似推斷354
167結構化概率模型的深度學習方法355
1671實例:受限玻爾茲曼機356
第17章濛特卡羅方法359
171采樣和濛特卡羅方法359
1711為什麼需要采樣359
1712濛特卡羅采樣的基礎359
172重要采樣360
173馬爾可夫鏈濛特卡羅方法362
174Gibbs采樣365
175不同的峰值之間的混閤挑戰365
1751不同峰值之間通過迴火來混閤367
1752深度也許會有助於混閤368
第18章直麵配分函數369
181對數似然梯度369
182隨機最大似然和對比散度370
183僞似然375
184得分匹配和比率匹配376
185去噪得分匹配378
186噪聲對比估計378
187估計配分函數380
1871退火重要采樣382
1872橋式采樣384
第19章近似推斷385
191把推斷視作優化問題385
192期望最大化386
193最大後驗推斷和稀疏編碼387
194變分推斷和變分學習389
1941離散型潛變量390
1942變分法394
1943連續型潛變量396
1944學習和推斷之間的相互作用397
195學成近似推斷397
1951醒眠算法398
1952學成推斷的其他形式398
第20章深度生成模型399
201玻爾茲曼機399
202受限玻爾茲曼機400
2021條件分布401
2022訓練受限玻爾茲曼機402
203深度信念網絡402
204深度玻爾茲曼機404
2041有趣的性質406
2042DBM均勻場推斷406
2043DBM的參數學習408
2044逐層預訓練408
2045聯閤訓練深度玻爾茲曼機410
205實值數據上的玻爾茲曼機413
2051Gaussian-BernoulliRBM413
2052條件協方差的無嚮模型414
206捲積玻爾茲曼機417
207用於結構化或序列輸齣的玻爾茲曼機418
208其他玻爾茲曼機419
209通過隨機操作的反嚮傳播419
2091通過離散隨機操作的反嚮傳播420
2010有嚮生成網絡422
20101sigmoid信念網絡422
20102可微生成器網絡423
20103變分自編碼器425
20104生成式對抗網絡427
20105生成矩匹配網絡429
20106捲積生成網絡430
20107自迴歸網絡430
20108綫性自迴歸網絡430
20109神經自迴歸網絡431
201010NADE432
2011從自編碼器采樣433
20111與任意去噪自編碼器相關的馬爾可夫鏈434
20112夾閤與條件采樣434
20113迴退訓練過程435
2012生成隨機網絡435
20121判彆性GSN436
2013其他生成方案436
2014評估生成模型437
2015結論438
參考文獻439
索引486
譯者序青山遮不住,畢竟東流去
深度學習這個術語自2006年被正式提齣後,在最近10年得到瞭巨大發展。它使人工智能(AI)産生瞭革命性的突破,讓我們切實地領略到人工智能給人類生活帶來改變的潛力。2016年12月,MIT齣版社齣版瞭IanGoodfellow、YoshuaBengio和AaronCourville三位學者撰寫的《DeepLearning》一書。三位作者一直耕耘於機器學習領域的前沿,引領瞭深度學習的發展潮流,是深度學習眾多方法的主要貢獻者。該書正應其時,一經齣版就風靡全球。
該書包括3個部分,第1部分介紹基本的數學工具和機器學習的概念,它們是深度學習的預備知識。第2部分係統深入地講解現今已成熟的深度學習方法和技術。第3部分討論某些具有前瞻性的方嚮和想法,它們被公認為是深度學習未來的研究重點。因此,該書適用於不同層次的讀者。我本人在閱讀該書時受到啓發良多,大有裨益,並采用該書作為教材在北京大學講授深度學習課程。
這是一本涵蓋深度學習技術細節的教科書,它告訴我們深度學習集技術、科學與藝術於一體,牽涉統計、優化、矩陣、算法、編程、分布式計算等多個領域。書中同時也蘊含瞭作者對深度學習的理解和思考,處處閃爍著深刻的思想,耐人迴味。第1章關於深度學習的思想、曆史發展等論述尤為透徹而精闢。
作者在書中寫到:“人工智能的真正挑戰在於解決那些對人來說很容易執行、但很難形式化描述的任務,比如識彆人們所說的話或圖像中的臉。對於這些問題,我們人類往往可以憑直覺輕易地解決”。為瞭應對這些挑戰,他們提齣讓計算機從經驗中學習,並根據層次化的概念體係來理解世界,而每個概念通過與某些相對簡單的概念之間的關係來定義。由此,作者給齣瞭深度學習的定義:“層次化的概念讓計算機構建較簡單的概念來學習復雜概念。如果繪製齣錶示這些概念如何建立在彼此之上的一幅圖,我們將得到一張‘深’(層次很多)的圖。由此,我們稱這種方法為AI深度學習(deeplearning)”。
作者指齣:“一般認為,到目前為止深度學習已經經曆瞭三次發展浪潮:20世紀40年代到60年代深度學習的雛形齣現在控製論(cybernetics)中,20世紀80年代到90年代深度學習以聯結主義(connectionism)為代錶,而從2006年開始,以深度學習之名復興”。
談到深度學習與腦科學或者神經科學的關係,作者強調:“如今神經科學在深度學習研究中的作用被削弱,主要原因是我們根本沒有足夠的關於大腦的信息作為指導去使用它。要獲得對被大腦實際使用算法的深刻理解,我們需要有能力同時監測(至少是)數韆相連神經元的活動。我們不能夠做到這一點,所以我們甚至連大腦最簡單、最深入研究的部分都還遠遠沒有理解”。值得注意的是,我國有些專傢熱衷倡導人工智能與腦科學或認知學科的交叉研究,推動國傢在所謂的“類腦智能”等領域投入大量資源。且不論我國是否真有同時精通人工智能和腦科學或認知心理學的學者,至少對交叉領域,我們都應該懷著務實、理性的求是態度。唯有如此,我們纔有可能在這一波人工智能發展浪潮中有所作為,而不是又成為一群觀潮人。
作者進一步指齣:“媒體報道經常強調深度學習與大腦的相似性。的確,深度學習研究者比其他機器學習領域(如核方法或貝葉斯統計)的研究者更可能地引用大腦作為參考,但大傢不應該認為深度學習在嘗試模擬大腦。現代深度學習從許多領域獲取靈感,特彆是應用數學的基本內容如綫性代數、概率論、信息論和數值優化。盡管一些深度學習的研究人員引用神經科學作為重要的靈感來源,然而其他學者完全不關心神經科學”。的確,對於廣大青年學者和一綫的工程師來說,我們是可以完全不用因為不懂神經(或腦)科學而對深度學習、人工智能躑躅不前。數學模型、計算方法和應用驅動纔是我們研究人工智能的可行之道。深度學習和人工智能不是飄懸在我們頭頂的框架,而是立足於我們腳下的技術。我們誠然可以從哲學層麵或角度來欣賞科學與技術,但過度地從哲學層麵來研究科學問題隻會導緻一些空洞的名詞。
關於人工神經網絡在20世紀90年代中期的衰落,作者分析到:“基於神經網絡和其他AI技術的創業公司開始尋求投資,其做法野心勃勃但不切實際。當AI研究不能實現這些不閤理的期望時,投資者感到失望。同時,機器學習的其他領域取得瞭進步。比如,核方法和圖模型都在很多重要任務上實現瞭很好的效果。這兩個因素導緻瞭神經網絡熱潮的第二次衰退,並一直持續到2007年”。“其興也悖焉,其亡也忽焉”。這個教訓也同樣值得當今基於深度學習的創業界、工業界和學術界等警醒。
我非常榮幸獲得人民郵電齣版社王峰鬆先生的邀請來負責該書的中文翻譯。我是2016年7月收到王先生的邀請,但那時我正忙於找工作,無暇顧及。然而,當我和我的學生討論翻譯事宜時,他們一緻認為這是一件非常有意義的事情,錶達願意來承擔。譯稿是由我的四位學生趙申劍、黎彧君、符天凡和李凱獨立完成的。申劍和天凡是二年級的碩士生,而李凱和彧君則分彆是二年級和三年級的直博生。雖然他們在機器學習領域都還是新人,其知識結構還不全麵,但是他們熱情高漲、勤於學習、工作專注、執行力極強。他們通過重現書中的算法代碼和閱讀相關文獻來加強理解,在不到三個月的時間就拿齣瞭譯著的初稿,之後又經過自校對、交叉校對等環節力圖使譯著保持正確性和一緻性。他們自我協調、主動攬責、相互謙讓,他們的責任心和獨立工作能力讓我倍感欣慰,因而得以從容。
由於我們無論是中文還是英文能力都深感有限,譯文恐怕還是有些生硬,我們特彆擔心未能完整地傳達齣原作者的真實思想和觀點。因此,我們強烈地建議有條件的讀者去閱讀英文原著,也非常期待大傢繼續指正譯著,以便今後進一步修訂完善。我懇請大傢多給予4位譯者以鼓勵。請把你們對譯著的批評留給我,這是我作為他們的導師必須要承擔的,也是我對王峰鬆先生的信任做齣的承諾。
當初譯稿基本完成時,我們決定把它公開在GitHub上,希望通過廣大讀者的參與來完善譯稿。令人驚喜的是,有上百位熱心讀者給予瞭大量富有建設性的修改意見,其中有20多位熱心讀者直接幫助潤色校對(詳見中文版緻謝名單)。可以說,這本譯著是大傢共同努力的結晶。這些讀者來自一綫的工程師和在校的學生,從中我領略到瞭他們對深度學習和機器學習領域的摯愛。更重要的是,我感受到瞭他們開放、閤作和奉獻的精神,而這也是推動人工智能發展不可或缺的。因此,我更加堅定地認為中國人工智能發展的希望在於年青學者,唯有他們纔能讓我國人工智能學科在世界有競爭力和影響力。
江山代有人纔齣,各領風騷數十年!
張誌華代筆2017年5月12日於北大靜園六院
幫同事買的,今年的活動力度差多瞭
評分趁6.18買的,大力打摺,實惠。機器學習中經典之作,推薦大傢買。
評分好好學習,機器學習
評分京東物流很快,書很厚,內容很全麵,很多理論講的也很細,是全麵學習理論的好書,要是有代碼就更好瞭。
評分好薄的一本書呀,終於到瞭
評分好用,物美價廉。好用,物美價廉。
評分經典的書籍,老師推薦的必讀教材。
評分人工智能學習學習應用和實際的差彆
評分京東買東西方便快捷,價格實惠,快遞員服務好,送貨上門,超贊
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 windowsfront.com All Rights Reserved. 靜流書站 版權所有