发表于2024-11-22
多媒体技术基础(第4版)(清华大学计算机系列教材) pdf epub mobi txt 电子书 下载
本版教材系统介绍了多媒体系统的核心技术,在内容上力求选用相对成熟和实用的新技术,在技术原理阐述和解释上力求清楚准确。为保持多媒体技术基础教材内容的系统性和完整性,本教材不免与其他学科教材有交集。此外,教材中包含许多技术背景和技术细节,目的是为更好地理解技术原理,细节也反映理解的深浅。在上述思想指导下,使本教材的篇幅比较大,但还是比国外同类教材的篇幅小很多。
每章均附有练习和思考题,用于辅助读者掌握本章的要点;每章内容的来源都列出了参考文献和站点,读者可用于加深对教材内容的理解和扩大知识面。
《多媒体技术基础》第4版教材在第3版的基础上,对教材内容做了较大幅度的增减。从多媒体系统角度出发,本版教材分成三个部分: (1)多媒体压缩和编码(第2~14章),介绍文字、声音、图像和数字电视媒体的基本知识、压缩和编码方法; (2)多媒体光盘存储技术(第15~17章),介绍CD、DVD、HD�睤VD和蓝光盘的存储原理和存储格式; (3)多媒体网络(第18~32章),以多媒体网络应用和服务质量(QoS)为中心,介绍计算机网络的互联、宽带(有线、无线和移动)接入因特网的基础知识。每章均附有练习和思考题,用于辅助读者掌握本章的要点;每章内容的来源都列出了参考文献和站点,读者可用于加深对教材内容的理解和扩大知识面。
林福宗 清华大学计算机科学与技术系退休教授,1970年毕业于清华大学自动控制系,留校工作直至退休。从1989年开始对多媒体产生兴趣,其后一直从事多媒体技术基础的教学和应用研究,曾编写并在清华大学出版社出版《英汉多媒体技术辞典》、《多媒体技术基础》教材等图书。
第5章彩色数字图像基础
图像是多媒体中携带信息的极其重要的媒体,有人发表过统计资料,认为人们获取的信息的70%来自视觉系统。由于图像数字化之后的数据量非常大,在因特网上传输时很费时间,在盘上存储时很占“地盘”,因此就必须要对图像数据进行压缩。压缩的目的就是要满足存储容量和传输带宽的要求,而付出的代价则是大量的计算。几十年来,许多科技工作者一直在孜孜不倦地寻找更有效的方法,用比较少的数据量表达原始的图像。
图像数据压缩主要是根据下面两个基本事实来实现的。一个事实是图像数据中有许多重复的数据,使用数学方法来表示这些重复数据可减少数据量;另一个事实是人的眼睛对图像细节和颜色的辨认有一个极限,把超过极限的部分去掉,也就达到压缩数据的目的。利用前一个事实的压缩技术是无损数据压缩技术,利用后一个事实的压缩技术是有损数据压缩技术。实际的图像压缩是综合使用各种有损和无损数据压缩技术来实现的。
本章将介绍表示数字彩色图像所需要的基本知识、使用得相当广泛的JPEG压缩标准和图像文件的存储格式。在介绍过程中,要涉及有关颜色的度量和颜色空间的转换问题,这些比较深入的问题将在第8章“颜色度量体系”和第9章“颜色空间转换”中介绍。
5.1视觉系统对颜色的感知
颜色是视觉系统对可见光的感知结果。可见光是波长在380~780nm之间的电磁波,我们看到的大多数光不是一种波长的光,而是由许多不同波长的光组合成的。人们在研究眼睛对颜色的感知过程中普遍认为,人的视网膜有对红、绿、蓝颜色敏感程度不同的三种锥体细胞,另外还有一种在光功率极端低的条件下才起作用的杆状体细胞,因此颜色只存在于眼睛和大脑。在计算机图像处理中,杆状细胞还没有扮演什么角色。
人的视觉系统对颜色的感知可归纳出如下几个特性:
(1)眼睛本质上是一个照相机。视网膜(humanretina)通过神经元来感知外部世界的颜色,每个神经元是一个对颜色敏感的锥体(cone)或是一个对颜色不敏感的杆状体(rod)。
(2)红、绿和蓝三种锥体细胞对不同频率的光的感知程度不同,对不同亮度的感知程度也不同。这就意味着,人们可以使用数字图像处理技术来降低表示图像的数据量,而不使人感到图像质量有明显下降。
(3)自然界中的任何一种颜色都可以由R、G、B这三种颜色值之和来确定,它们构成一个三维的RGB矢量空间。这就是说,R、G、B的数值不同,混合得到的颜色就不同,也就是光波的波长不同。
5.2图像的颜色模型
在文献和教材中,用于描述颜色的常用词有两个:颜色模型和颜色空间。颜色模型(colormodel)是用数值指定颜色的方法,颜色空间(colorspace)是用空间中点的集合描述颜色的方法,它们互为同义词。RGB和CMYK是计算机系统使用最广泛的两个颜色模型。
5.2.1显示彩色图像用RGB相加混色模型
一个能发出光波的物体称为有源物体,它的颜色由该物体发出的光波决定,并且使用RGB相加混色模型。电视机和计算机显示器使用的阴极射线管(CathodeRayTube,CRT)就是一个有源物体。CRT使用3个电子枪分别产生红(red)、绿(green)和蓝(blue)三种波长的光,并以各种不同的相对强度综合起来产生颜色,如图5��1(a)所示。虽然当今的电视机和计算机显示器几乎都使用彩色LED显示器,但生成颜色的原理与阴极射线管(CRT)类似。
组合这三种光波来产生特定颜色的方法叫作相加混色法(additivecolormixture),因为这种相加混色是利用R、G和B颜色分量产生颜色,故称为RGB相加混色模型。相加混色是计算机应用中定义颜色的基本方法。
从理论上讲,任何一种颜色都可用三种基本颜色按不同的比例混合得到。三种颜色的光强越强,到达我们眼睛的光就越多,它们的比例不同,我们看到的颜色也就不同。没有光到达眼睛,就是一片漆黑。当三基色按不同强度相加时,总的光强增强,并可得到任何一种颜色。某一种颜色和这三种颜色之间的关系可用下面的式子来描述:
颜色=R(红色的百分比)+G(绿色的百分比)+B(蓝色的百分比)
当三基色等量相加时,得到白色;等量的红绿相加而蓝为0时得到黄色;等量的红蓝相加而绿为0时得到品红色;等量的绿蓝相加而红为0时得到青色。这些三基色相加的结果如图5��1(b)所示。
图5��1颜色生成原理
一幅彩色图像可以看成是由许多的点组成的,如图5��2所示。图像中的单个点称为像素(pixel),每个像素都有一个值,称为像素值,它表示特定颜色的强度。图5��2一幅图像由许多像素组成
一个像素值往往用R、G、B三个分量表示。如果每个像素的三个颜色分量都用二进制的1位来表示,那么每个颜色的分量只有“1”和“0”这两个值,这也就是说,每个颜色分量的强度是100%或者是0%。在这种情况下,每个像素所显示的颜色是8种可能的颜色之一,见表5��1。
对于标准的电视图形阵列(VideoGraphicsArray,VGA)适配卡的16种标准颜色,其对应的R、G、B值见表5��2。在Microsoft公司的Windows操作系统中,用代码0~15表示。表中的代码1~6表示的颜色比较暗,它们是用最大光强值的一半产生的颜色;9~15是用最大光强值产生的。表5��1相加色RGB颜色RGB颜色000黑100红001蓝101品红010绿110黄011青111白在表5��2中,每种基色的强度是用8位表示的,因此可产生224=16777216种颜色。但实际上要用1600多万种颜色的场合是很少的。在多媒体计算机中,除用RGB来表示颜色外,还用色调�脖ズ投泉擦炼�(Hue�睸aturation�睱ightness,HSL)表示。
在HSL模型中,H定义颜色的波长,称为色调;S定义颜色的强度(intensity),表示颜色的深浅程度,称为饱和度;L定义掺入的白光量,称为亮度。用HSL表示颜色的重要性,是因为它比较容易为画家所理解。若把S和L的值设置为1,当改变H时就是选择不同的纯颜色;减小饱和度S时,就可体现掺入白光的效果;降低亮度时,颜色就暗,相当于掺入黑色。因此在Windows附带的画图软件也用了HSL表示法。表5��216色VGA调色板的值代码RGBHSL相加色000016000黑(Black)10012816024060蓝(Blue)2012808024060绿(Green)3012812812024060青(Cyan)412800024060红(Red)5128012820024060品红(Magenta)612812804024060褐色(DarkYellow)71921921921600180白(LightGray)81281281281600120深灰(DarkGray)900255160240120淡蓝(LightBlue)100255080240120淡绿(LightGreen)110255255120240120淡青(LightCyan)12255000240120淡红(LightRed)132550255200240120淡品红(LightMagenta)14255255040240120黄(Yellow)152552552551600240高亮白(BrightWhite)5.2.2打印彩色图像用CMY相减混色模型
一个不发光波的物体称为无源物体,它的颜色由该物体吸收或者反射哪些光波决定,用CMY相减混色模型。用彩色墨水或颜料进行混合,绘制的图画就是一种无源物体,用这种方法生成的颜色称为相减色。从理论上说,任何一种颜色都可以用三种基本颜色的颜料按一定比例混合得到。这三种颜色是青色(cyan)、图5��3相减混色
品红(magenta)和黄色(yellow),通常写成CMY,称为CMY模型。用这种方法产生的颜色之所以称为相减色,是因为它减少了为视觉系统识别颜色所需要的反射光。
在相减混色中,当三基色等量相减时得到黑色;等量黄色(Y)和品红(M)相减而青色(C)为0时,得到红色(R);等量青色(C)和品红(M)相减而黄色(Y)为0时,得到蓝色(B);等量黄色(Y)和青色(C)相减而品红(M)为0时,得到绿色(G)。三基色相减结果如图5��3所示。
彩色打印机采用的就是这种原理,印刷彩色图片也是采用这种原理。按每个像素每种颜色用1位表示,相减法产生的8种颜色如表5��3所示。由于彩色墨水和颜料的化学特性,用等量的三基色得到的黑色不是真正的黑色,因此在印刷术中常加一种真正的黑色(blackink),所以CMY又写成CMYK。表5��3相减色C(青色)M(品红)Y(黄色)相减色000白001黄010品红011红100青101绿110蓝111黑相加色与相减色之间有一个直接关系,见表5��4所示。利用它们之间的关系,可以把显示的颜色转换成输出打印的颜色。相加混色和相减混色之间成对出现互补色。例如,当RGB为1∶1∶1时,在相加混色中产生白色,而CMY为1∶1∶1时,在相减混色中产生黑色。从另一个角度也可以看出它们的互补性,例如,RGB为0∶1∶0,对应CMY为1∶0∶1。续表表5��4相加色与相减色的关系相加混色(RGB)相减混色(CMY)生成的颜色000111黑001110蓝010101绿011100青100011红101010品红110001黄111000白5.3图像的三个基本属性
属性是标识和描述被管理对象的特性,图像的属性包含分辨率、像素深度、真/伪彩色、图像的表示法和种类等,本节将介绍前面三个特性。
5.3.1图像分辨率
我们经常遇到的分辨率(resolution)有两种:屏幕分辨率和图像分辨率。为更好地理解图像分辨率的概念,首先介绍屏幕分辨率。
1.屏幕分辨率
屏幕分辨率也称显示分辨率,它是衡量显示设备再现图像时所能达到的精细程度的度量方法。屏幕分辨率通常用水平和垂直方向所能显示的像素数目表示,写成“水平像素数×垂直像素数”,如640×480表示显示屏分成480行,每行显示640个像素,整个显示屏含有307200个显像点。常见的屏幕分辨率包括640×480、800×600、1024×768、1280×1024。水平分辨率与垂直分辨率的比例通常是4∶3,与传统电视的宽高比相同,但与高清晰度电视的宽高比(16∶9)不同。
屏幕能够显示的像素越多,说明显示设备的分辨率越高,显示的图像质量也就越高。显示屏上的每个彩色像点由代表R、G、B三种模拟信号的相对强度决定,这些彩色像点就构成一幅彩色图像。
2.图像分辨率
图像分辨率(imageresolution)是图像精细程度的度量方法。对同样尺寸的一幅图,如果像素数目越多,则说明图像的分辨率越高,看起来就越逼真。相反,图像显得越粗糙。图像分辨率也称空间分辨率(spatialresolution)和像素分辨率(pixelresolution)。
在图像显示应用中,图像分辨率有多种方法表示。例如:(1)物理尺寸,如“每毫米线数(或行数)”;(2)行列像素,用“像素/行×行/幅”表示,如640像素/行×480行/幅;(3)像素总数,如在手机的相机上标的“1600万像素”;(4)单位长度(面积)的像素,如像素每英寸(PixelsPerInch,PPI);(5)线对(linepair)数,以黑白相邻的两条线为一对,如“每毫米10线”表示黑线和白线相间的5对线;(6)像素深度(见5.3.2节)。
在图像数字化和打印应用中,通常要指定图像的分辨率,用每英寸多少点(DotsPerInch,DPI)表示。如果用300DPI来扫描一幅8″×10″的彩色图像,就得到一幅2400×3000个像素的图像。分辨率越高,像素就越多。
图像分辨率与屏幕分辨率是两个不同的概念。从行列像素角度看,图像分辨率是构成一幅图像的像素数目,而屏幕分辨率是显示图像的区域大小。例如,如果屏幕分辨率为640×480,那么一幅320×240像素的图像只占显示屏的1/4;相反,2400×3000像素的图像在这个显示屏上就不能显示其完整的画面。
5.3.2像素深度与阿尔法(α)通道1.像素深度像素深度是指存储每个像素所用的位数。例如,在电视图像信号数字化时,记录每个图像样本信号的位数为8、10、12或16位。8位表示的分辨率是1/256,10位表示的分辨率是1/1024。在这个意义上,像素深度也被认为是图像分辨率的一种度量方法。
像素深度决定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数。例如,一幅彩色图像的每个像素用R、G、B三个分量表示,若每个分量用8位,那么一个像素共用24位表示,就说像素的深度是24,每个像素可以是224=16777216种颜色中的一种。在这个意义上,往往把像素深度说成是图像深度。表示一个像素的位数越多,它能表达的颜色数目就越多,而它的深度就越深。
虽然像素深度或图像深度可以很深,但各种VGA的颜色深度却受到限制。例如,标准VGA支持4位16种颜色的彩色图像,多媒体应用中通常推荐用8位256种颜色。由于设备的限制,加上人眼分辨率的限制,一般情况下,不一定要追求特别深的像素深度。此外,像素深度越深,所占用的存储空间也越大。相反,如果像素深度太浅,那也影响图像的质量,图像看起来让人觉得很粗糙和很不自然。
2.α通道
在用二进制数表示彩色图像的像素时,除R、G、B分量用固定位数表示外,往往还增加1位或几位作为属性(attribute)位。例如,RGB5∶5∶5表示一个像素时,用2个字节共16位表示,其中R、G、B各占5位,剩下最高1位(b15)作为属性位,用来指定该像素应具有的性质,并把它称为透明(transparency)位,记为T。T的含义可以这样来理解:假如显示屏上已经有一幅图存在,如果要把另一幅图重叠在它上面,就可用T位来控制原图是否能看得见。例如,可定义T=1,原图完全看不见;T=0,原图能完全看见。在这种情况下,属性位T称为1位α通道(alphachannel),像素深度为16位,而图像深度为15位。
在每个像素用32位的图像表示法中,最高8位称为8位α通道,用于表示像素在对象中的透明度,其余24位是颜色通道,红色、绿色和蓝色分量各占8位通道。这个由8位构成的α通道可看作是一个预乘数通道。因此,例如,一个像素(A,R,G,B)的四个分量都用规一化的数值表示,当像素值为(1,1,0,0)时显示红色,当像素值为(0.5,1,0,0)时,使用α通道中的预乘数0.5与R、G、B相乘的结果就为(0.5,0.5,0,0),表示原来该像素显示的红色强度为1,而现在显示的红色的强度为0.5。又如,用两幅图像A和B混合成一幅新图像(New),它的像素为:Newpixel=(alpha)(pixelAcolor)+(alpha)(pixelBcolor)。
用α通道描述像素属性在实际中很有用。例如,在一幅彩色图像上叠加文字说明,而又不想让文字把图覆盖掉,就可用α通道,而又有人把该像素显示的颜色称为混合色(keycolor)。在视像产品生产过程中,也往往把数字电视图像和计算机生产的图像混合在一起,这种技术称为视图混合(videokeying)技术,它也采用α通道。
5.3.3真伪彩色和直接色
了解真彩色、伪彩色与直接色的含义,对于编写图像显示程序、理解图像文件的存储格式都有很大帮助,对“本来是用真彩色表示的图像,但在VGA显示器上显示的颜色却不是原来图像的颜色”这类现象也不会感到困惑。
1.真彩色
真彩色(truecolor)是指每个像素的颜色值用红(R)、绿(G)和蓝(B)表示的颜色。例如,用RGB5∶5∶5表示图像颜色,R、G、B各用5位,其值大小直接确定三个基色的强度,这样得到的彩色是真实的原图彩色。真彩色通常用24位表示,因此也称24位颜色(24�瞓itcolor)或全彩色(fullcolor),其颜色数目为224=16777216种。
2.伪彩色
伪彩色(pseudocolor)是指每个像素的颜色不是由每个基色分量的数值直接决定的颜色,而是把像素值当作彩色查找表(ColorLook�睻pTable,CLUT)的表项入口地址,去查找显示图像时使用的R、G、B值,用查找出的R、G、B值产生的彩色称为伪彩色。
彩色查找表(CLUT)是一个事先做好的表,表项入口地址也称为索引号。例如,在有256种颜色的查找表中,0号索引对应黑色……255号索引对应白色。彩色图像本身的像素数值和彩色查找表的索引号有一个变换关系,这个关系可以使用Windows定义的变换关系,也可以使用你自己定义的变换关系。使用查找得到的数值显示的彩色是真的,但不是图像本身真正的颜色,它没有完全反映原图的颜色。
3.直接色
每个像素值由R、G、B分量构成,每个分量作为单独的索引值对它做变换,也就是通过相应的彩色变换表找出基色强度,用变换后的R、G、B强度值产生的颜色称为直接色(directcolor)。它的特点是对每个基色进行变换。
5.4图像的种类[��4/5]5.4.1矢量图与位图在计算机中,表示图像的常用方法有两种,一种称为矢量图法,生成的图像叫作矢量图(vectorgraphics),另一种称为位图法,生成的图像叫作位图(bitmap或bitmappedimage)。虽 多媒体技术基础(第4版)(清华大学计算机系列教材) 电子书 下载 mobi epub pdf txt
好。
评分好。
评分好。
评分好。
评分好。
评分好。
评分好。
评分好。
评分好。
多媒体技术基础(第4版)(清华大学计算机系列教材) pdf epub mobi txt 电子书 下载