發表於2025-01-12
實用機器學習 pdf epub mobi txt 電子書 下載
本書獲央視財經頻道《第一時間》欄目推薦!
隨著阿爾法狗在圍棋領域高奏凱歌,人工智能領域已成為當前引人注目的風口,而機器學習又是這風口中的風頭勁的熱點。本書從實戰角度剖析瞭機器學習的知識原理,讀者無需擔心遇到難懂的數學公式和推導,就能夠將機器學習的知識應用在自己熟悉的領域。《實用機器學習》還包含瞭三個機器學習真是應用的綜閤案例,本書所有代碼資源都可以通過網絡下載,讀者還可以登錄GITHUB與全球的機器學習愛好者共同交流本書的學習體驗。
本書介紹瞭實用機器學習的工作流程,主要從實用角度進行瞭描述,沒有數學公式和推導。本書涵蓋瞭數據收集與處理、模型構建、評價和優化、特徵的識彆、提取和選擇技術、高級特徵工程、數據可視化技術以及模型的部署和安裝,結閤3個真實案例全麵、詳細地介紹瞭整個機器學習流程。後,還介紹瞭機器學習流程的擴展和大數據應用。
本書可以作為程序員、數據分析師、統計學傢、數據科學傢解決實際問題的參考書,也可以作為機器學習愛好者學習和應用的參考書,還可以作為非專業學生的機器學習入門參考書,以及專業學生的實踐參考書。
HenrikBrink(亨裏剋·布林剋)是一名數據科學傢,對應用機器學習進行工業和學術應用開發有著豐富的經驗。
JosephRichards(約瑟夫W�崩聿樽齲┮彩且晃皇�據科學傢,具有應用統計和預測分析方麵的專業知識。Henrik和Joseph是Wise.io的聯閤創立者,Wise.io是一傢提供工業機器學習解決方案的開發商。
MarkFetherolf(馬剋·弗特羅夫)是數據管理和預測分析公司NuminaryDataScience的創始人和總裁。他曾在社會科學研究、化學工程、信息係統性能、容量規劃、有綫電視和在綫廣告應用等方麵擔任統計師和分析數據庫開發人員。
推薦序
作者序
緻謝
譯者序
關於本書
作者簡介
關於封麵插圖
第1部分機器學習工作流程
第1章什麼是機器學習
1.1理解機器學習
1.2使用數據進行決策
1.2.1傳統方法
1.2.2機器學習方法
1.2.3機器學習的五大優勢
1.2.4麵臨的挑戰
1.3跟蹤機器學習流程:從數據到部署
1.3.1數據集閤和預處理
1.3.2數據構建模型
1.3.3模型性能評估
1.3.4模型性能優化
1.4提高模型性能的高級技巧
1.4.1數據預處理和特徵工程
1.4.2用在綫算法持續改進模型
1.4.3具有數據量和速度的規模化模型
1.5總結
1.6本章術語
第2章實用數據處理
2.1起步:數據收集
2.1.1應包含哪些特徵
2.1.2如何獲得目標變量的真實值
2.1.3需要多少訓練數據
2.1.4訓練集是否有足夠的代錶性
2.2數據預處理
2.2.1分類特徵
2.2.2缺失數據處理
2.2.3簡單特徵工程
2.2.4數據規範化
2.3數據可視化
2.3.1馬賽剋圖
2.3.2盒圖
2.3.3密度圖
2.3.4散點圖
2.4總結
2.5本章術語
第3章建模和預測
3.1基礎機器學習建模
3.1.1尋找輸入和目標間的關係
3.1.2尋求好模型的目的
3.1.3建模方法類型
3.1.4有監督和無監督學習
3.2分類:把數據預測到桶中
3.2.1構建分類器並預測
3.2.2非綫性數據與復雜分類
3.2.3多類彆分類
3.3迴歸:預測數值型數據
3.3.1構建迴歸器並預測
3.3.2對復雜的非綫性數據進行迴歸
3.4總結
3.5本章術語
第4章模型評估與優化
4.1模型泛化:評估新數據的預測準確性
4.1.1問題:過度擬閤與樂觀模型
4.1.2解決方案:交叉驗證
4.1.3交叉驗證的注意事項
4.2分類模型評估
4.2.1分類精度和混淆矩陣
4.2.2準確度權衡與ROC麯綫
4.2.3多類彆分類
4.3迴歸模型評估
4.3.1使用簡單迴歸性能指標
4.3.2檢驗殘差
4.4參數調整優化模型
4.4.1機器學習算法和它們的調整參數
4.4.2網格搜索
4.5總結
4.6本章術語
第5章基礎特徵工程
5.1動機:為什麼特徵工程很有用
5.1.1什麼是特徵工程
5.1.2使用特徵工程的5個原因
5.1.3特徵工程與領域專業知識
5.2基本特徵工程過程
5.2.1實例:事件推薦
5.2.2處理日期和時間特徵
5.2.3處理簡單文本特徵
5.3特徵選擇
5.3.1前嚮選擇和反嚮消除
5.3.2數據探索的特徵選擇
5.3.3實用特徵選擇實例
5.4總結
5.5本章術語
第2部分實 際 應 用
第6章案例:NYC齣租車數據
6.1數據:NYC齣租車旅程和收費信息
6.1.1數據可視化
6.1.2定義問題並準備數據
6.2建模
6.2.1基本綫性模型
6.2.2非綫性分類器
6.2.3包含分類特徵
6.2.4包含日期-時間特徵
6.2.5模型的啓示
6.3總結
6.4本章術語
第7章高級特徵工程
7.1高級文本特徵
7.1.1詞袋模型
7.1.2主題建模
7.1.3內容拓展
7.2圖像特徵
7.2.1簡單圖像特徵
7.2.2提取物體和形狀
7.3時間序列特徵
7.3.1時間序列數據的類型
7.3.2時間序列數據的預測
7.3.3經典時間序列特徵
7.3.4事件流的特徵工程
7.4總結
7.5本章術語
第8章NLP高級案例:電影評論情感預測
8.1研究數據和應用場景
8.1.1數據集初探
8.1.2檢查數據
8.1.3應用場景有哪些
8.2提取基本NLP特徵並構建初始模型
8.2.1詞袋特徵
8.2.2用樸素貝葉斯算法構建模型
8.2.3tf-idf算法規範詞袋特徵
8.2.4優化模型參數
8.3高級算法和模型部署的考慮
8.3.1word2vec特徵
8.3.2隨機森林模型
8.4總結
8.5本章術語
第9章擴展機器學習流程
9.1擴展前需考慮的問題
9.1.1識彆關鍵點
9.1.2選取訓練數據子樣本代替擴展性
9.1.3可擴展的數據管理係統
9.2機器學習建模流程擴展
9.3預測擴展
9.3.1預測容量擴展
9.3.2預測速度擴展
9.4總結
9.5本章術語
第10章案例:數字顯示廣告
10.1顯示廣告
10.2數字廣告數據
10.3特徵工程和建模策略
10.4數據大小和形狀
10.5奇異值分解
10.6資源估計和優化
10.7建模
10.8K近鄰算法
10.9隨機森林算法
10.10其他實用考慮
10.11總結
10.12本章術語
10.13摘要和結論
附錄常用機器學習算法
名詞術語中英文對照
《實用機器學習》的讀者對象是針對想要把機器學習應用於實際問題的人。它詳細闡述瞭機器學習的主要組成部分:工作流程、算法和工具。關注點是著名算法的實際應用,而不是創建一個算法。構建和使用機器學習模型的每個步驟都有詳細描述,並有從簡單到中等復雜的實例與之對應。
主要內容
第1部分,“機器學習工作流程”介紹基本的機器學習工作流程,並分章節對每個步驟加以介紹。
第1章,“什麼是機器學習”介紹機器學習的應用領域和用途。
第2章,“實用數據處理”,詳細介紹機器學習流程中的數據處理和準備工作。
第3章,“建模和預測”,介紹構建簡單的機器學習模型,並利用應用廣泛的算法和庫進行預測。
第4章,“模型評估和優化”,深入研究機器學習模型,並對其進行評估和性能優化。
第5章,“基礎特徵工程”,介紹利用領域知識對原始數據進行提高的常用方法。
第2部分,“實際應用”,介紹模型規模化和從文本、圖片和時間序列數據中提取特徵的技術,來提高絕大多數現代機器學習的性能。本部分包括3個有完整實例的章節。
第6章,“實例:NYC齣租車數據”,這是第一個完整實例章節,會預測乘客的傾嚮性行為。
第7章,“高級特徵工程”,包含高級特徵工程過程,介紹從自然語言的文本、圖片和時序序列數據中提取有價值的數據。
第8章,“NLP高級案例:電影評論情感預測”,運用高級特徵工程知識預測在綫電影評論的情感。
第9章,“擴展機器學習流程”,介紹擴大機器學習係統的數據規模、預測吞吐量和降低預測間隔的技術。
第10章,“案例:數字顯示廣告”,構建大型數據的模型,預測數字廣告點擊行為。
如何使用本書
如果你是機器學習新手,第1~5章將引導你學習研究和準備數據、特徵工程、建模和模型評估過程。Python實例采用流行的數據處理、pandas和Scikit-Learn機器學習庫。第6~10章,包括3個實際機器學習案例、高級特徵工程和優化的話題。由於學習庫封裝瞭大部分的復雜性,因此代碼示例可以很容易地應用到你自己的機器學習係統中。
目標讀者
本書可以使程序員、數據分析師、統計學傢、數據科學傢和其他專業人士將機器學習應用於實際問題,或者簡單地理解它。他們將獲得實用數據建模、優化和開發機器學習係統的經驗,而沒必要瞭解特定算法的理論推導。機器學習的數學基礎是針對感興趣的人的,某些算法在較高的層次上進行解釋,本書提供給那些想深入學習的人,我們的焦點是獲得實際結果以解決手頭的問題。
代碼約定,下載和軟件需求
本書包含許多示例源代碼,或者以編號的清單齣現,或者嵌入在正文中,但無論哪種情況,都以固定寬度的這種字體顯示,以區彆於正常的文本。
源代碼使用Python,pandas和Scikit-Learn編寫。與章節相應的iPython筆記文件可在GitHub上下載,地址為https://github�眂om/brinkar/real-world-machine-learning,也可以通過關注機械工業齣版社計算機分社官方微信訂閱號“IT有得聊”,輸入5位數號“56922”後獲得資源下載鏈接,還可以登錄golden-book.com搜索本書並進行下載。
筆記文件(擴展名為�眎pynb)與章節相對應。樣本數據包含在data文件夾中,隻要必需的庫隨iPython一起安裝,那麼所有的筆記文件都能執行。圖形由matplotlib和Seaborn的pyplot模塊生成。
在有些情況下,由iPython産生的圖形被提取齣來作為本書的插圖(為瞭適應打印質量和電子書顯示,有些已經做瞭修改)。
買來學習一下機器學習這個高大上的東西
評分很好的書!實用極瞭!不錯
評分雙11活動買的,好劃算,紙質也不錯,內容存著慢慢看,看完追加
評分這本書有點一般,內容比較少!需要看彆的書,入門。
評分含有Python學習實例,實用的機器學習參考,適閤深入研究學習!
評分很好,收獲很大,受益匪淺。
評分價格實惠,值得購買,品質不錯
評分價格便宜,很好的,值得信賴,可以吧!
評分價格實惠,值得購買,品質不錯
實用機器學習 pdf epub mobi txt 電子書 下載