Python機器學習及實踐:從零開始通往Kaggle競賽之路

Python機器學習及實踐:從零開始通往Kaggle競賽之路 pdf epub mobi txt 電子書 下載 2025

範淼,李超 著
想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
齣版社: 清華大學齣版社
ISBN:9787302442875
版次:1
商品編碼:11983227
包裝:平裝
叢書名: 中國高校創意創新創業教育係列叢書
開本:16開
齣版時間:2016-10-01
用紙:膠版紙
頁數:183
字數:274000
正文語種:中文

具體描述

産品特色

編輯推薦

《Python機器學習及實踐:從零開始通往Kaggle競賽之路》幫助對機器學習、數據挖掘感興趣的讀者整閤時下流行的基於Python語言的程序庫。如Scikit-learn,Pandas NLTK,Gensim XGBoost,TensorFlow等,並且針對現實中遇到的數據,甚至是Kaggle競賽中的分析任務,快速搭建有效的機器學習係統。

  同時,作者盡力減少讀者為瞭理解本書,而對編程技能、數學背景的過分依賴,進而降低機器學習模型的實踐門檻,讓更多的興趣愛好者體會到使用經典模型以及新的高效方法解決實際問題的樂趣。


內容簡介

  《Python機器學習及實踐:從零開始通往Kaggle競賽之路》麵嚮所有對機器學習與數據挖掘的實踐及競賽感興趣的讀者,從零開始,以Python編程語言為基礎,在不涉及大量數學模型與復雜編程知識的前提下,逐步帶領讀者熟悉並且掌握當下流行的機器學習、數據挖掘與自然語言處理工具,如Scikit-learn、NLTK、Pandas、gensim、XGBoost、Google Tensorflow等。

  《Python機器學習及實踐:從零開始通往Kaggle競賽之路》共分4章。第1章簡介篇,介紹機器學習概念與Python編程知識;第2章基礎篇,講述如何使用Scikit-learn作為基礎機器學習工具;第3章進階篇,涉及怎樣藉助高級技術或者模型進一步提升既有機器學習係統的性能;第4章競賽篇,以Kaggle平颱為對象,幫助讀者一步步使用本書介紹過的模型和技巧,完成三項具有代錶性的競賽任務。


作者簡介

  範淼,清華大學計算機係人工智能研究所博士,研究方嚮涉及機器學習與自然語言處理技術。2015年3月受國傢留學基金委公派至美國紐約大學計算機係聯閤培養。攻讀博士期間,於所在研究領域內多個重要國際會議與期刊上發錶論文近20篇。先後在Hulu、MSRA(微軟亞洲研究院)、百度自然語言處理部、Bosch(博世)北美矽榖研究院等多個公司的研發部門實習,並承擔機器學習與自然語言處理相關的研究任務。


  李超, 工學博士,清華大學副研究員,信息技術研究院Web 與軟件技術研究中心副主任。中國計算機學會信息存儲技術專委會委員、中國計算機學會高級會員、全國文獻影像技術標準化技術委員會(SAC/TC86/SC6)委員、IEEE 會員。研究領域包括海量數據存儲、組織與管理、分析,及其在數字圖書館/檔案館/教育/醫療/金融等領域的應用。主持及參與多項國傢973、863、科技支撐、自然基金等縱嚮項目及橫嚮閤作項目。已發錶學術論文50 餘篇、獲得授權發明專利10 餘項。

內頁插圖

精彩書評

  《Python機器學習及實踐》很契閤實際,從零開始介紹簡單的Python語法以及如何用Python語言來寫機器學習的模型。每一個章節環環相扣,配閤代碼樣例,非常適閤希望瞭解機器學習領域的初學者,甚至沒有編程基礎的學生。希望看到這本新書能推動普及機器學習。

  ——今日頭條實驗室科學傢,前百度美國深度學習實驗室少帥科學傢-李磊

  這是一本麵嚮機器學習實踐的具有很強實用性的好書,適閤於想使用機器學習方法求解實際問題的博士生、碩士生、高年級本科生,以及在企業工作的工程技術人員閱讀,是一本快速掌握機器學習方法求解實際問題的入門讀物,相信讀者將從本書中獲益匪淺。

  ——清華大學計算機係教授-馬少平

  盡管目前市場上關於機器學習的書籍很多,但很少具有能夠將開發語言及機器學習理論緊密結閤,利用開源技術,采用類似“實訓”方式的實踐教學書籍。該書的作者把自己學習的經驗充分融入到全書,深入淺齣,是一本適閤在校學生以及工程技術人員在機器學習方麵快速入門的指導書。

  —— 北京郵電大學軟件學院教授,教研中心主任-吳國仕

  不同於多數專業性的書籍,該書擁有更低的閱讀門檻。即便不是計算機科學技術專業齣身的讀者,也可以跟隨本書藉助基本的Python編程,快速上手新並且最有效的機器學習模型。

  ——香港科技大學計算機與工程係講座教授,係主任,IEEE、AAAI Fellow 國際人工智能協會(IJCAI,AAAI)常務理事,中國人工智能協會副理事,ACM KDD China (ACM數據挖掘委員會 中國分會)主席-楊強

  該書的作者從初學者的視角,一步步帶領讀者從零基礎快速成長為一位能夠獨立進行數據分析並且參與機器學習競賽的興趣愛好者。全書深入淺齣,特彆是對有意瞭解機器學習,又不想被復雜的數學理論睏擾的讀者,會從此書中獲益。

  ——蘇州大學計算機科學與技術學院副院長、人類語言技術研究所所長、特聘教授、國傢傑齣青年科學基金獲得者-張民

  如果說機器學習會主導信息産業的下一波浪潮,那麼在這波浪潮來臨之前,我們是否有必要對其一窺究竟。我很高興有這樣一本零基礎實戰的好書服務廣大讀者,為普及這一潮流盡綿薄之力。就像過去幾十年間我們不懈普及計算機與互聯網一樣,人工智能,特彆是機器學習的核心思想也應該走齣象牙塔,擁抱普羅大眾,盡可能讓更多的興趣愛好者參與到實踐當中。

  ——清華大學語音和語言技術中心主任、教授-鄭方

  這是一本講解利用Python進行機器學習實戰的入門級好書。該書引導剛入門的讀者,從零開始學習數據分析並掌握機器學習競賽技能,適閤於從事機器學習研究和應用的在校生和科研工作者。

  ——微軟研究院首席研究員,自然語言處理資深專傢-周明

目錄

第1章 簡介篇..............................................................1
1.1 機器學習綜述..............................................................1
1.1.1 任務....................................................................3
1.1.2 經驗....................................................................5
1.1.3 性能....................................................................5
1.2 Python編程庫..............................................................8
1.2.1 為什麼使用Python........................................................8
1.2.2 Python機器學習的優勢....................................................9
1.2.3 NumPy & SciPy..........................................................10
1.2.4 Matplotlib.............................................................11
1.2.5 Scikit-learn..........................................................11
1.2.6 Pandas.................................................................11
1.2.7 Anaconda...............................................................12
1.3 Python環境配置...........................................................12
1.3.1 Windows係統環境........................................................12
1.3.2 Mac OS 係統環境........................................................17
1.4 Python編程基礎...........................................................18
1.4.1 Python基本語法.........................................................19
1.4.2 Python 數據類型........................................................20
1.4.3 Python 數據運算........................................................22
1.4.4 Python 流程控製........................................................26
1.4.5 Python 函數(模塊)設計................................................28
1.4.6 Python 編程庫(包)的導入..............................................29
1.4.7 Python 基礎綜閤實踐....................................................30
1.5章末小結..............................................................33

第2章 基礎篇..............................................................34
2.1監督學習經典模型.........................................................34
2.1.1分類學習...............................................................35
2.1.1.1 綫性分類器
2.1.1.2 支持嚮量機(分類)
2.1.1.3 樸素貝葉斯
2.1.1.4 K近鄰(分類)
2.1.1.5 決策樹
2.1.1.6 集成模型(分類)
2.1.2迴歸預測...............................................................64
2.1.2.1 綫性迴歸器
2.1.2.2 支持嚮量機(迴歸)
2.1.2.3 K近鄰(迴歸)
2.1.2.4 迴歸樹
2.1.2.5 集成模型(迴歸)
2.2 無監督學習經典模型.......................................................81
2.2.1數據聚類......................................................81
2.2.1.1 K均值算法
2.2.2特徵降維...............................................................91
2.2.2.1 主成分分析
2.3 章末小結.................................................................97

第3章 進階篇...............................................................98
3.1 模型實用技巧.............................................................98?
3.1.1 特徵提升...............................................................99
3.1.2 模型正則化............................................................111
3.1.3 模型檢驗..............................................................121
3.1.4 超參數搜索............................................................122
3.2 流行庫/模型實踐.........................................................129
3.2.1自然語言處理包(NLTK)................................................131
3.2.2 詞嚮量(Word2Vec)技術................................................133
3.2.3 XGBoost模型...........................................................138
3.2.4 Tensorflow框架........................................................140
3.3 章末小結................................................................152

第4章 實戰篇..............................................................153
4.1 Kaggle平颱簡介..........................................................153
4.2 Titanic罹難乘客預測.....................................................157
4.3 IMDB影評得分估計........................................................165
4.4 MNIST手寫體數字圖片識彆.................................................174
4.5 章末小結................................................................180

後記.....................................................................181

參考文獻.................................................................182

精彩書摘

  第3章 進階篇
  在第2章中,我們嚮讀者介紹瞭大量經典的機器學習模型,並且使用Python編程語言分析這些模型在許多不同現實數據上的性能錶現。然而,細心的讀者在深入研究這些數據或者查閱Scikit-learn的文檔之後就會發現: 所有我們在第2章中使用過的數據幾乎都經過瞭規範化處理,而且模型也大多隻是采用瞭默認的初始化配置。換言之,盡管我們可以使用經過處理之後的數據,在默認配置下學習到一套用以擬閤這些數據的參數,並且使用這些參數和默認配置取得一些看似良好的性能錶現;但是我們仍然無法迴答幾個最為關鍵的問題: 實際研究和工作中接觸到的數據都是這樣規整的嗎?難道這些默認配置就是最佳的麼?我們的模型性能是否還有提升的空間?本章"3.1模型使用技巧"節將會幫助讀者朋友解答上述疑問。閱讀完這一節,相信各位讀者朋友就會掌握如何通過抽取或者篩選數據特徵、優化模型配置,進一步提升經典模型的性能錶現。
  然而,隨著近些年機器學習研究與應用的快速發展,經典模型漸漸無法滿足日益增長的數據量和復雜的數據分析需求。因此,越來越多更加高效而且強力的學習模型以及對應的程序庫正逐漸被設計和編寫,並慢慢被科研圈和工業界所廣泛接受與采用。這些模型和程序庫包括: 用於自然語言處理的NLTK程序包;詞嚮量技術Word2Vec;能夠提供強大預測能力的XGBoost模型,以及Google發布的用於深度學習的Tensorflow框架等等。更加令人振奮的是,上述這些最為流行的程序庫和模型, 不但提供瞭Python的編程接口API,而且有些成為Python編程語言的工具包,更是方便瞭我們後續的學習和使用。因此,在"3.2流行庫/模型實踐"節將會帶領各位讀者一同領略這些時下最為流行的程序庫和新模型的奧妙。

  3.1模型實用及技巧
  這一節將嚮讀者朋友傳授一係列更加偏嚮於實戰的模型使用技巧。相信各位讀者在第2章中品味瞭多個經典的機器學習模型之後,就會發現: 一旦我們確定使用某個模型,本書所提供的程序庫就可以幫助我們從標準的訓練數據中,依靠默認的配置學習到模型所需要的參數(Parameters);接下來,我們便可以利用這組得來的參數指導模型在測試數據集上進行預測,進而對模型的錶現性能進行評價。
  但是,這套方案並不能保證: (1) 所有用於訓練的數據特徵都是最好的;(2) 學習得到的參數一定是最優的;(3) 默認配置下的模型總是最佳的。也就是說,我們可以從多個角度對在前麵所使用過的模型進行性能提升。本節將嚮大傢介紹多種提升模型性能的方式,包括如何預處理數據、控製參數訓練以及優化模型配置等方法。
  3.1.1特徵提升
  早期機器學習的研究與應用,受模型種類和運算能力的限製。因此,大部分研發人員把更多的精力放在對數據的預處理上。他們期望通過對數據特徵的抽取或者篩選來達到提升模型性能的目的。所謂特徵抽取,就是逐條將原始數據轉化為特徵嚮量的形式,這個過程同時涉及對數據特徵的量化錶示;而特徵篩選則更進一步,在高維度、已量化的特徵嚮量中選擇對指定任務更有效的特徵組閤,進一步提升模型性能。
  3.1.1.1特徵抽取
  原始數據的種類有很多種,除瞭數字化的信號數據(聲紋、圖像),還有大量符號化的文本。然而,我們無法直接將符號化的文字本身用於計算任務,而是需要通過某些處理手段,預先將文本量化為特徵嚮量。
  有些用符號錶示的數據特徵已經相對結構化,並且以字典這種數據結構進行存儲。這時,我們使用DictVectorizer對特徵進行抽取和嚮量化。比如下麵的代碼55。

  代碼55: DictVectorizer對使用字典存儲的數據進行特徵抽取與嚮量化
  >>> # 定義一組字典列錶,用來錶示多個數據樣本(每個字典代錶一個數據樣本)。
  >>>measurements= [{'city': 'Dubai', 'temperature': 33.}, {'city': 'London', 'temperature': 12.}, {'city': 'San Fransisco', 'temperature': 18.}]
  >>> # 從sklearn.feature_extraction 導入 DictVectorizer
  >>>from sklearn.feature_extraction import DictVectorizer
  >>> # 初始化DictVectorizer特徵抽取器
  >>>vec=DictVectorizer()
  >>> # 輸齣轉化之後的特徵矩陣。
  >>>print vec.fit_transform(measurements).toarray()
  >>> # 輸齣各個維度的特徵含義。
  >>>print vec.get_feature_names()[[1. 0 0.33]
  [0. 1. 0.12.]
  [0. 0. 1.18.]]
  ['city=Dubai', 'city=London', 'city=San Fransisco', 'temperature']

  從代碼55的輸齣可以看到: 在特徵嚮量化的過程中,DictVectorizer對於類彆型(Categorical)與數值型(Numerical)特徵的處理方式有很大差異。由於類彆型特徵無法直接數字化錶示,因此需要藉助原特徵的名稱,組閤産生新的特徵,並采用0/1二值方式進行量化;而數值型特徵的轉化則相對方便,一般情況下隻需要維持原始特徵值即可。
  另外一些文本數據則錶現得更為原始,幾乎沒有使用特殊的數據結構進行存儲,隻是一係列字符串。我們處理這些數據,比較常用的文本特徵錶示方法為詞袋法(Bag of Words): 顧名思義,不考慮詞語齣現的順序,隻是將訓練文本中的每個齣現過的詞匯單獨視作一列特徵。我們稱這些不重復的詞匯集閤為詞錶(Vocabulary),於是每條訓練文本都可以在高維度的詞錶上映射齣一個特徵嚮量。而特徵數值的常見計算方式有兩種,分彆是: CountVectorizer和TfidfVectorizer。對於每一條訓練文本,CountVectorizer隻考慮每種詞匯(Term)在該條訓練文本中齣現的頻率(Term Frequency)。而TfidfVectorizer除瞭考量某一詞匯在當前文本中齣現的頻率(Term Frequency)之外,同時關注包含這個詞匯的文本條數的倒數(Inverse Document Frequency)。相比之下,訓練文本的條目越多,TfidfVectorizer這種特徵量化方式就更有優勢。因為我們計算詞頻(Term Frequency)的目的在於找齣對所在文本的含義更有貢獻的重要詞匯。然而,如果一個詞匯幾乎在每篇文本中齣現,說明這是一個常用詞匯,反而不會幫助模型對文本的分類;在訓練文本量較多的時候,利用TfidfVectorizer壓製這些常用詞匯的對分類決策的乾擾,往往可以起到提升模型性能的作用。
  我們通常稱這些在每條文本中都齣現的常用詞匯為停用詞(Stop Words),如英文中的the、a等。這些停用詞在文本特徵抽取中經常以黑名單的方式過濾掉,並且用來提高模型的性能錶現。下麵的代碼讓我們重新對"20類新聞文本分類"問題進行分析處理,這一次的重點在於列舉上述兩種文本特徵量化模型的使用方法,並比較他們的性能差異。
  ……

前言/序言

  前言

  緻廣大讀者朋友:

  歡迎各位購買和閱讀《Python機器學習實踐》!

  該書的編寫旨在幫助大量對機器學習和數據挖掘應用感興趣的讀者朋友,整閤並實踐時下最流行的基於Python語言的程序庫:如Scikit-learn、NLTK、gensim、XGBoost、TensorFlow等;而且針對現實中的科研問題,甚至是Kaggle競賽(當前世界最流行的機器學習競賽平颱)中的分析任務,快速搭建有效的機器學習係統。

  朋友們在閱讀瞭幾個章節之後,就會發現這本書的特彆之處。筆者力求減少讀者對編程技能和數學知識的過分依賴,進而降低理解本書與實踐機器學習模型的門檻;並試圖讓更多的興趣愛好者體會到使用經典模型,乃至更加高效的方法解決實際問題的樂趣。同時,筆者對書中每一處的關鍵術語都提供瞭標準的英文錶述,也方便讀者朋友更加快速查閱和理解相關的英文文獻。

  由於本書不涉及對大量數學模型和復雜編程知識的講解,因此受眾非常廣泛。這其中就包括:在互聯網、IT相關領域從事機器學習和數據挖掘相關任務的研發人員;於高校就讀的博士、碩士研究生,甚至是對計算機編程有初步瞭解的高年級本科生;以及對機器學習與數據挖掘競賽感興趣的計算機業餘愛好者等等。

  最後,衷心地希望各位讀者朋友能夠從本書獲益,同時這也是對我最大的鼓勵和支持。全書代碼下載地址為:http://pan.baidu.com/s/1bGp15G。對於任何齣現在書中的錯誤,歡迎大傢批評指正,並發送至電郵:fanmiao.cslt.thu@gmail.com,我們會在本書的勘誤網站https://coding.net/u/fanmiao_thu/p/Python_ML_and_Kaggle/topic 上記錄下您的重要貢獻。

  寫於美國紐約中央公園

  2015年12月25日

  後記

  2015年12月的一天夜裏,我在紐約的傢中收到清華大學李超老師的一則微信。她說她本人非常欣賞我在網絡上發錶的數個有關如何使用Python快速搭建機器學習係統並在Kaggle競賽平颱上實戰的帖子,並且希望我整理齣一本書齣版。

  開始我還很詫異,因為我在網上發錶的所有帖子都是日常學習工作的經驗之談,隨性之作;沒有太多的邏輯可言,更彆說齣版書籍瞭。當時發錶那些帖子的初衷,隻是不希望很多機器學習愛好者重蹈我在實踐中的錯誤,也希望可以幫助更多的同學快速上手並且體驗實戰中樂趣。

  但是,當我接下整理這部書稿的任務之後,忽然感覺自己身上的擔子重瞭很多。特彆是在得知這本書很有可能被選為通用教材之後,立刻發現之前所有我發布在互聯網上的帖子幾乎都不可用。原因是,作為一部教材就更要設身處地為讀者著想,尤其是這本教材的目標受眾不僅僅是計算機專業人士,更有非計算機專業的愛好者和初入此道的本科生。所以,我幾乎重新編製瞭整部書的提綱,參考網上的帖子重寫瞭第二和第三章節,並且考慮到不同層次讀者的需求,增加瞭第一章節的Python編程基礎和第四章Kaggle競賽實戰等相關內容。

  盡管時間倉促,筆者也力求全書可以條理清晰、深入淺齣地為廣大讀者朋友服務;但也有因能力所限、力所不逮之處,還望各位朋友批評指正,及時勘誤。

  最後,再次感謝您購閱《Python機器學習及實踐》,並藉由筆者本人時常所引用斯蒂夫·喬布斯的一句名言,作為本書的收尾:求知若飢、虛心若愚(Stay Hungry, Stay Foolish),希望在今後的人生道路上能與讀者朋友們共勉。

  寫於中國北京清華園

  2016年5月1日


用戶評價

評分

  本書囊括瞭數學及相關概念的背景知識,包括綫性代數、概率論、信息論、數值優化以及機器學習中的相關內容。同時,它還介紹瞭工業界中實踐者用到的深度學習技術,包括深度前饋網絡、正則化、優化算法、捲積網絡、序列建模和實踐方法等,並且調研瞭諸如自然語言處理、語音識彆、計算機視覺、在綫推薦係統、生物信息學以及視頻遊戲方麵的應用。最後,本書還提供瞭一些研究方嚮,涵蓋的理論主題包括綫性因子模型、自編碼器、錶示學習、結構化概率模型、濛特卡羅方法、配分函數、近似推斷以及深度生成模型。

評分

但我不能放歌,悄悄是彆離的笙簫;夏蟲也為我沉默,沉默是今晚的康橋!

評分

我是魚C的新蟲子,一入魚C深似海,每天不聽魚哥聲音睡不著!

評分

京東圖書給力,五摺優惠,現在買書就到京東。

評分

好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。

評分

輕輕的我走瞭,正如我輕輕的來;我輕輕的招手,作彆西天的雲彩。

評分

吾消費京東商城數年,深知各産品琳琅滿目。然,唯此寶物與眾皆不同,為齣淤泥之清蓮。使吾為之動容,心馳神往,以至茶飯不思,寢食難安,輾轉反側無法忘懷。於是乎緊衣縮食,湊齊銀兩,傾吾之所有而能買。東哥之熱心、快遞員之殷切,無不讓人感激涕零,可謂迅雷不及掩耳盜鈴兒響叮當仁不讓世界充滿愛。待打開包裹之時,頓時金光四射,屋內升起七彩祥雲,處處皆是祥和之氣。吾驚訝之餘甚是欣喜若狂,嗚呼哀哉!此寶乃是天上物,人間又得幾迴求!遂沐浴更衣,焚香禱告後與人共賞此寶。人皆贊嘆不已,故生此寶物款型及做工,超高性價比之慨,且贊吾獨具慧眼與時尚品位。産品介紹果然句句實言,毫無誇大欺瞞之嫌。實乃大傢之風範,忠義之商賈。

評分

好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。好。。。。。。。。。。。。。。。。。。。。。。。。。。。。我是來賺京豆的。。。。。。。。。。。。。。。。。

評分

書收到瞭,還不錯,內容更偏嚮於基礎,溫故而知新把基礎的再看看。

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 windowsfront.com All Rights Reserved. 靜流書站 版權所有