国外数学名著系列(影印版)41:常微分方程和微分代数方程的计算机方法 [Computer Methods for Ordinary Differential Equations and Differe pdf epub mobi txt 电子书 下载 2024

图书介绍


国外数学名著系列(影印版)41:常微分方程和微分代数方程的计算机方法 [Computer Methods for Ordinary Differential Equations and Differe

简体网页||繁体网页
[美] Uri,M.Ascher,Linda,R.Petzold 著



点击这里下载
    


想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-22

类似图书 点击查看全场最低价

出版社: 科学出版社
ISBN:9787030234865
版次:1
商品编码:11918501
包装:精装
丛书名: 国外数学名著系列(续一)(影印版)41
外文名称:Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations
开本:1

国外数学名著系列(影印版)41:常微分方程和微分代数方程的计算机方法 [Computer Methods for Ordinary Differential Equations and Differe epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

相关图书



国外数学名著系列(影印版)41:常微分方程和微分代数方程的计算机方法 [Computer Methods for Ordinary Differential Equations and Differe epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

国外数学名著系列(影印版)41:常微分方程和微分代数方程的计算机方法 [Computer Methods for Ordinary Differential Equations and Differe pdf epub mobi txt 电子书 下载



具体描述

内容简介

  Designed for those people who want to gain a practical knowledge of modem techniques,this book contains all the material necessary for a course on the nmnerical solution of differential equations.Written by two of the field's leading athorities,it provides a unified presentation of initial value and boundary value problems in ODEs as well as differential- algebraic equations.The approach is aimed at a thorough understanding of the issues and methods for practical computation while avoiding an extensive theorem-proof type of exposition.It also addresses reasons why existing software succeeds or fails. This book is a practical and mathematically well informed introduction that emphasizes basic methods and theory,issues in the use and development of mathematical software,and examples from scientific engineering applications.Topics requiring an extensive amount of mathematical development,such as symplectic methods for Hamiltonian systems,are introduced,motivated,and included in the exercises,but a complete and rigorous mathematical presentation is referenced rather than included. This book is appropriate for senior undergraduate or beginning graduate students with a computational focus and practicing engineers and scientists who want to learn about computational differential equations.A beginning course in numerical analysis is needed,and a beginning course in ordinary differential equations would be helpful.

内页插图

目录

List of Figures
List of Tables
Preface
Part Ⅰ:Introduction
1 Ordinary Differential Equations
1.1 IVPs
1.2 BVPs
1.3 Differential-Algebraic Equations
1.4 Families of Application Problems
1.5 Dynamical Systems
1.6 Notation

Part Ⅱ:Initial Value Problems
2 On Problem Stability
2.1 Test Equation and General Definitions
2.2 Linear,Constant-Coefficient Systems
2.3 Linear,Variable-Coefficient Systems
2.4 Nonlinear Problems
2.5 Hamiltonian Systems
2.6 Notes and References
2.7 Exercises
3 Basic Methods,Basic Concepts
3.1 A Simple Method:Forward Euler
3.2 Convergence,Accuracy,Consistency,and O-Stability
3.3 Absolute Stability
3.4 Stiffness:Backward Euler
3.4.1 Backward Euler
3.4.2 Solving Nonlinear Equations
3.5 A-Stability,Stiff Decay
3.6 Symmetry:Trapezoidal Method
3.7 Rough Problems
3.8 Software,Notes,and References
3.8.1 Notes
3.8.2 Software
3.9 Exercises
4 One-Step Methods
4.1 The First Runge-Kutta Methods
4.2 General Formulation of Runge-Kutta Methods
4.3 Convergence,O-Stability,and Order for Runge-Kutta Methods
4.4 Regions of Absolute Stability for Explicit Runge-Kutta Methods
4.5 Error Estimation and Control
4.6 Sensitivity to Data Perturbations
4.7 Implicit Runge-Kutta and Collocation Methods
4.7.1 Implicit Runge-Kutta Methods Based on Collocation
4.7.2 Implementation and Diagonally Implicit Methods...
4.7.3 Order Reduction
4.7.4 More on Implementation and Singly Implicit RungeKutta Methods
4.8 Software,Notes,and References
4.8.1 Notes
4.8.2 Software
4.9 Exercises
5 Linear Multistep Methods
5.1 The Most Popular Methods
5.1.1 Adams Methods
5.1.2 BDF
5.1.3 Initial Values for Multistep Methods
5.2 Order,O-Stability,and Convergence
5.2.1 Order
5.2.2 Stability:Difference Equations and the Root Condition
5.2.3 O-Stability and Convergence
5.3 Absolute Stability
5.4 Implementation of hnplicit Linear Multistep Methods
5.4.1 Functional Iteration
5.4.2 Predictor-Corrector Methods
5.4.3 Modified Newton Iteration
5.5 Designing Multistep General-Purpose Software
5.5.1 Variable Step-Size Formulae
5.5.2 Estimating and Controlling the Local Error
5.5.3 Approximating the Solution at Off-Step Points
5.6 Software,Notes,and References
5.6.1 Notes
5.6.2 Software
5.7 Exercises

Part Ⅲ:Boundary Value Problems
6 More Boundary Value Problem Theory and Applications
6.1 Linear BVPs and Green's Function '.
6.2 Stability of BVPs
6.3 BVP Stiffness
6.4 Some Reformulation Tricks
6.5 Notes and References
6.6 Exercises
7 Shooting
7.1 Shooting:A Simple Method and Its Limitations
7.1.1 Difficulties
7.2 Multiple Shooting
7.3 Software,Notes,and References
7.3.1 Notes
7.3.2 Software
7.4 Exercises
8 Finite Difference Methods for Boundary Value Problems
8.1 Midpoint and Trapezoidal Methods
8.1.1 Solving Nonlinear Problems:Quasi-Linearization
8.1.2 Consistency,O-Stability,and Convergence
8.2 Solving the Linear Equations
8.3 Higher-Order Methods
8.3.1 Collocation
8.3.2 Acceleration Techniques
8.4 More on Solving Nonlinear Problems
8.4.1 Damped Newton
8.4.2 Shooting for Initial Guesses
8.4.3 Continuation
8.5 Error Estimation and Mesh Selection
8.6 Very Stiff Problems
8.7 Decoupling
8.8 Software,Notes,and References
8.8.1 Notes
8.8.2 Software
8.9 Exercises

Part Ⅳ:Differential-Algebraic Equations
9 More on Differential-Algebraic Equations
9.1 Index and Mathematical Structure
9.1.1 Special DAE Forms
9.1.2 DAE Stability
9.2 Index Reduction and Stabilization:ODE with Invariant
9.2.1 Reformulation of Higher-Index DAEs
9.2.2 ODEs with Invariants
9.2.3 State Space Formulation
9.3 Modeling with DAEs
9.4 Notes and References
9.5 Exercises
10 Numerical Methods for Differential-Algebraic Equations
10.1 Direct Discretization Methods
10.1.1 A Simple Method:Backward Euler
10.1.2 BDF and General Multistep Methods
10.1.3 Radau Collocation and Implicit Runge-Kutta Methods
10.1.4 Practical Difficulties
10.1.5 Specialized Runge-Kutta Methods for Hessenberg Index-2 DAEs
10.2 Methods for ODEs on Manifolds
10.2.1 Stabilization of the Discrete Dynamical System
10.2.2 Choosing the Stabilization Matrix F
10.3 Software,Notes,and References
10.3.1 Notes
10.3.2 Software
10.4 Exercises
Bibliography
Index

前言/序言


国外数学名著系列(影印版)41:常微分方程和微分代数方程的计算机方法 [Computer Methods for Ordinary Differential Equations and Differe 电子书 下载 mobi epub pdf txt

国外数学名著系列(影印版)41:常微分方程和微分代数方程的计算机方法 [Computer Methods for Ordinary Differential Equations and Differe pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

类似图书 点击查看全场最低价

国外数学名著系列(影印版)41:常微分方程和微分代数方程的计算机方法 [Computer Methods for Ordinary Differential Equations and Differe pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


国外数学名著系列(影印版)41:常微分方程和微分代数方程的计算机方法 [Computer Methods for Ordinary Differential Equations and Differe bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 windowsfront.com All Rights Reserved. 静流书站 版权所有