数学思维导论 学会像数学家一样思考

数学思维导论 学会像数学家一样思考 pdf epub mobi txt 电子书 下载 2025

[美] 基思·德夫林 著,林恩 译
图书标签:
  • 数学思维
  • 数学学习
  • 问题解决
  • 逻辑思维
  • 批判性思维
  • 数学方法
  • 思维导图
  • 学习技巧
  • 高等教育
  • 数学普及
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 人民邮电出版社
ISBN:9787115410474
版次:1
商品编码:11848204
包装:平装
丛书名: 图灵新知
开本:32开
出版时间:2016-01-01
用纸:胶版纸
页数:142
正文语种:中文

具体描述

编辑推荐

  写给高中生、大学生以及所有希望提高分析思维能力者的数学思维入门书
  大师教你学会像数学家一样思考,顺利完成从中学数学到大学数学的过渡,或者让你掌握在各行各业获得成功所需要的关键性思维能力
  Coursera热门课程《数学思维导论》配套教科书,结合线上课程,必能获得更好的学习效果

内容简介

  许多大学新生都曾在从中学数学到大学数学的过渡过程中遇到过困难。他们突然发现自己要面对的似乎是一种全新的数学,被要求学会用一种不同于往的方式思考。同时,各行各业的从业者也越来越深刻地意识到,现如今,良好的分析思维能力比以往任何时候都更加重要,而具备“数学思维技能”的人会在竞争中占据巨大优势。
  本书正是这样一本写给高中生、大学生以及所有希望提高分析思维能力者的数学思维入门书。它将教你学会像数学家一样思考,顺利完成从中学数学到大学数学的过渡,或者让你掌握在各行各业获得成功所需要的关键性思维能力。
  阅读本书只需高中程度的数学。同时,本书也是Coursera热门课程《数学思维导论》的配套教科书,结合线上课程,必能获得更好的学习效果。

作者简介

  基思·德夫林(Keith Devlin),1947年出生于英国赫尔市,1972年在布里斯托尔大学获得数学博士学位,1987年移居美国,拥有英国和美国双重国籍。
  他现为斯坦福大学人类–科学与技术高等研究院(H-STAR)联合创始人和执行主任、斯坦福大学Media X研究网络联合创始人和执行委员会委员、斯坦福大学语言与信息研究中心(CSLI)高级研究员。目前的研究主要关注于,运用不同的媒介向各种受众传授和传播数学。为此,他还创办了一家制作数学学习视频游戏的公司BrainQuake。
  他著有八十多篇研究论文、七部研究性专著、八本教科书,以及十多本普及性读物,后者包括《数学:新的黄金时代》《笛卡儿,拜拜!》《数字缉凶》《数学犹聊天》《数学的语言》《千年难题》《数学天赋》《数字人:斐波那契的兔子》等。
  他还长期为美国数学学会撰写专栏“德夫林的视角”(Devlin's Angle),并在Coursera上开辟了热门课程《数学思维导论》。

目录

导论 本书是讲什么的?  1
第1章 什么是数学?  9
1.1 不止是算术  10
1.2 数学符号  13
1.3 现代大学数学  15
1.4 你为什么需要学这些?  19
第2章 语言的精确化  23
2.1 数学陈述  24
2.2 逻辑联结词“ 与”、“ 或”、“ 非”  31
2.3 蕴涵  40
2.4 量词  58
第3章 证明  79
3.1 什么是证明?  80
3.2 反证法  82
3.3 证明条件式  86
3.4 证明含量词的陈述  90
3.5 归纳证明  93
第4章 证明一些关于数的结论  103
4.1 整数  103
4.2 实数  114
4.3 完备性  118
4.4 序列  123
附录 集合论  129
译后记  137
索引  139

前言/序言

  在写本书的时候,我考虑的是这样两类读者:(1) 希望(或者可能)学习数学或数学相关专业的大学新生;(2) 出于某些原因,希望或者需要发展和提高分析思维技能的人。不管怎样,他们关注的都是学习用某种(非常强大的)方式思考。
  从本书中,你不会学到任何数学套路,更不需要应用任何数学套路!尽管最后一章的重点是数(初等数论和实分析基础),但我只放入了极少量关于这部分内容的“传统”数学材料。这一章仅仅展示了一些精彩的范例。长期以来,这些范例帮助数学家们发展分析思维技能,而这种技能也正是我将在本书中通篇描述的东西。
  19 世纪期间,不断提高的社会民主化和“扁平化”,使每一位公民拥有更多的自由和机会,在商业或社会中扮演重要及自主的角色。与此同时,大众对分析思维技能的需求也随之增长。今天,当代民主社会给人们提供了自我发展和提升的机会,而对任何希望能够充分利用这些机会的人来说,优秀的分析思维技能显得比以往任何时候都更加重要。
  数十年来,我都在教授那些在大学①(纯)数学上获得成功所需要的思维模式,并写作关于这方面的书。然而,直到最近十五年,在为产业界与政府提供了一部分咨询工作后,我才了解到,商业和政府领导人最欣赏的雇员恰恰正是具备“数学思维技能”的人,而该能力也正是我的课程与书所着重培养的能力。很少会有CEO 或政府实验室主任说,他们需要有特定技能的人;相反,他们需要的是,在必要时能够学习新的特定技能、拥有优秀分析思维技能的人。
  ① 贯穿全书始终,我将用“大学”指代“大学或学院”。
  根据这些来自学界和商界的互不相同却明显相互联系的经验,我决定尝试用一种能够被更广泛的受众接受的方式构思写作。话虽如此,这篇导论的其余部分还是主要针对那些需要学习一些(纯)数学课程的大学新生。而正如我刚才所讨论的那样,对于一般读者,我将要讲述的内容的价值在于,掌握现代纯数学所需要的数学思维技能,正是在各行各业中获得成功必备的关键性思维能力。
  亲爱的学生,
  正如你们即将发现的,从中学数学到大学水平(纯)抽象数学的过渡是很困难的。这并不是因为数学变难了。那些成功完成了过渡的学生可能会说,从许多方面来讲,大学数学其实是变得更容易了。就像我之前所提到的那样,许多人之所以会遇到这个问题,不过是因为重点变了。在中学,重点主要是掌握解决不同类型问题的套路,这使得学习过程变得像是阅读并且掌握一本数学烹饪书中的食谱。而在大学,重点成了学习用一种不同的、特殊的方式思考|| 像数学家一样思考。
  (事实上,并非所有大学数学课程都是如此。那些为科学和工程专业的学生设计的数学课程常常与构成中学数学最难部分的微积分课程并无二致。真正不同的是数学专业的那些数学课程。不过由于从事科学及工程领域中一些较高级的工作通常需要学习一些数学专业的课程,科学及工程专业的学生可能也会遇到这种“ 不同类型”的数学。)
  用数学的方式思考并不是一种不同的数学,它是一种数学视角,这种视角更开阔,更与时俱进,但却不会因为它的广度而流于浅薄。中学数学必修课通常强调数学套路而在很大程度上忽略了数学的其他部分。对于你们而言,大学数学起初确实像是一门完全不同的学科。当初我开始学习本科数学的时候,情况也是如此。如果你在大学里学习数学专业(或者像数学一样难的学科,如物理),那么你在中学时数学一定很好。这意味着,你一定十分擅长掌握及遵循既有套路(并且从某种程度上说,是在一定时限内完成)。中学教育体系嘉奖你,也正是因为这一点。然后你升入了大学,所有的规则都变了。事实上,根本没有规则可依,或者即便有,你一开始也是感觉仿佛教授们把它们偷偷藏了起来,秘而不宣。
  为什么当你进入大学后,重点发生了改变?答案很简单。教育是为了学习新技能及提高办事能力的。你能从中学毕业,便表示你已能学习新的数学套路,再教更多同样的东西给你也没什么用了。无论何时,只要你需要,你都能学习新的技能。
  例如,当一名钢琴学生掌握了一首柴可夫斯基钢琴协奏曲后,只需要一点点练习,而不需要再学什么新东西,他就能够演奏另一首。从那时起,该学生便该考虑如何发挥他的全部才能以演奏其他作曲家的作品,或者更充分地理解音乐以创作自己的作品。
  类似地,对数学而言,你在大学时的目标是培养能够让你解决新鲜问题的思维技能。这些问题可能是现实生活中的实际问题,也可能是来自数学或科学的问题,而你并没有解决这些问题的标准做法。而在某些情形下,这样一种标准做法可能并不存在。(当初两位斯坦福大学研究生拉里?佩奇和谢尔盖?布林在研发一种新的搜索信息的数学算法时,情况便是如此。后来利用这种算法,他们创立了Google。)
  让我们换个说法来更清楚地说明,为什么数学思维在现代世界中会如此珍贵。在大学前,你在数学上获得成功是通过学习“在盒子内思考”;而在大学时,你在数学上获得成功是通过学习“跳出盒子思考”,这种能力是今天每个大雇主都声称十分看重的。
  与其他所有“过渡课程”和“过渡课程教科书”一样,本书的首要重点是帮助你学习如何动手处理一个新问题,而对这个问题,你没有任何熟悉的模板可套用。这可归结为学习如何思考(一个给定的问题)。
  要想成功完成这次从中学到大学的过渡,有两个关键步骤你必须做到。第一个关键步骤是,学着不再寻找可使用的公式或者可遵循的套路。找一个模板(例如教科书中的或者Youtube 视频中演示的一个范例),然后仅仅替换其中的数字,这样的办法往往解决不了新问题。(你仍然可以用这种方式来处理大学数学的许多方面和现实生活中的应用,它们仍然有效。因此,你在中学的所有努力都不会被浪费。然而对于许多需要用新的“数学思维”思考的大学数学课程来说,这就不够了。)
  如果你不能通过寻找可效仿的模板、可套用的公式或者可应用的算法来解决问题,你会怎么做?答案是,思考这个问题,这就是第二个关键步骤。不是思考这个问题的形式(这是中学时所教的,在那时也很管用),而是思考它实际上说的是什么。尽管这听起来应该很容易,但我们中的大多数人一开始都会觉得这非常难和令人沮丧。考虑到你也可能经历过这些,你需要了解,这样的转变有其理由。它与数学在现实生活中的应用有关。我将在第1 章中阐述这一点,但现在,我只给你打个比方。
  如果我们将数学比成汽车世界,那么中学数学就是学习驾驶汽车,而大学数学所对应的则是学习汽车如何运作以及如何保养和维修它,并且如果你对这门学科钻研得足够深入,你还要学习如何设计及建造你自己的汽车。我将以一些要点结束这篇简短的导论。当你们学习本书时,要将这些要点牢记于心。
  学习本书仅要求学完(或即将学完)中学数学常规必修课。有一两处(特别是最后一章)需要一些初等集合论的知识(主要是集合的包含、并、交等概念及性质)。我将必要的材料放在附录中,以供不熟悉这个领域的人学习。
  记住:你觉得会很难的一个原因可能是,一切看上去漫无目的。其实这一切的目标都是为你学习树立数学思维(这种数学是你以前没有遇到过的)奠定基础。所以不可避免地,这个过程需要你主动尝试运用这种新的思维。
  把你的重点放在理解新概念与想法上。
  不要急于求成。要知道,这本书非常薄,需要学习的事实非常少,而需要理解的东西却很多!
  尝试完成练习,越多越好。把它们放进书中是为了帮助你理解。
  遇到困难时,与你的同学和授课老师讨论。我们之中能够独立完成这次关键性转变的人寥寥无几。
  我应该强调,这并不是一本为自学而设计的教科书。它是一本课程参考书,当你想从授课老师之外的来源获得一些补充信息时,它可以供你参考。
  书中有许多练习,我强烈主张你们去做这些练习。它们是本书不可分割的一部分。不过与教科书不同的是,我并没有提供这些练习的答案。这并不是我的疏忽,而是我深思熟虑后的选择。学习用数学的方式思考并不仅仅是为了获得答案。(尽管一旦你学会了用数学的方式思考,你会比单纯地遵照程序化的方法去做时更容易得到正确答案。)如果你想知道你的结果是否正确(我们都想知道),你应该向一些内行的人求助。判断一份数学推理是否正确是一种需要借助专业知识的价值判断。常常有学生得到表面上看起来正确的答案,而在仔细推敲后,却发现该答案是错的。当然,一些练习的答案我能放心地给出,但我还是要重申至关重要的这一点:完成从中学数学到大学数学的过渡,这一切都是围绕过程展开的,它关注的是尝试和思考,而不是“ 获得答案”。
  如果可以的话,与其他人共同学习。中学时,单独学习很普遍,因为中学时的重点在做。然而,掌握过渡课程内容需要思考,并且与其他人一起讨论学习比单独学习要好得多。让你的同学分析和点评你在证明中所做出的尝试,能够大大帮助你自己的学习与理解。
  不要试图囫囵吞枣地学习任何一节,即便它乍一看显得很容易。①本书中的内容是其他地方都用得到的。书中收入的每一样东西,通常都会给初学者带来问题。(在这一点上,你要相信我。)
  不要放弃。全世界的学生在去年、前年都做到了。许多年前,我也一样。所以你们也能!
  哦,对了,还有一件事:不要急于求成。
  记住,你的目标是理解和培养一种新的思维方式,一种你在各行各业都会觉得有用的思维方式。
  中学数学是关于做,大学数学则主要是关于思考。
  最后三个字的建议:慢慢来。祝你好运。
  基思?德夫林
  斯坦福大学

《思维的基石:探索逻辑与创新的边界》 在浩瀚的知识海洋中,有一种思维方式,它如同精密齿轮般驱动着科学的进步,又似灵动画笔般描绘着艺术的绚烂。它不是某个学科的专属,而是贯穿于我们认识世界、解决问题的过程之中。本书《思维的基石:探索逻辑与创新的边界》旨在为你揭示这种思维的内在规律,引导你踏上一段发现和重塑自我认知能力的旅程。 我们生活的世界,充斥着复杂的信息和看似棘手的难题。然而,许多困境并非无解,关键在于我们是否掌握了正确的方法去审视和剖析。本书将为你提供一套强大的思维工具箱,它们源自人类智慧的精华,经过千年的打磨和实践的检验。我们将从最根本的逻辑推理入手,探讨演绎、归纳、类比等基本推理形式,学习如何清晰地构建论证,辨别谬误,以及在纷繁复杂的现象中抓住事物的本质。理解逻辑,就像为你的思维搭建起稳固的框架,让你的思考不再摇摆不定,而是充满力量和清晰度。 然而,逻辑并非思维的全部。真正的智慧,在于在逻辑的基础上,迸发出创造的火花。本书将深入探讨创新的思维模式,从发散性思维的拓展,到收敛性思维的聚焦,再到逆向思维的突破,帮助你打破固有的思维定势,学会从不同角度审视问题,发现隐藏的联系,并生成独到的解决方案。我们将研究不同领域的创新案例,分析那些伟大的发明家、艺术家和思想家是如何在看似不可能中创造可能,从中汲取灵感,并将这些方法论转化为你自己的创新实践。 本书的结构设计,力求循序渐进,由浅入深。 第一部分:洞悉逻辑的精髓 第一章:思维的起点——清晰的定义与概念 我们将从最基础的“定义”开始,理解为何精确的定义是所有有效思考的前提。 探讨概念是如何形成的,以及不同概念之间的关系。 学习如何辨别模糊、歧义的概念,避免因概念不清而产生的误解和错误推理。 我们将通过一系列生活化的例子,让你体会到清晰定义在日常交流、学习和决策中的重要性。 第二章:逻辑的骨架——演绎推理 介绍演绎推理的核心原则:从一般到特殊。 深入讲解三段论(大前提、小前提、结论)的结构和有效性判断。 学习命题逻辑,理解“与”、“或”、“非”、“则”等逻辑联结词的含义和应用。 通过大量的练习,让你能够熟练地进行演绎推理,并识别常见的演绎谬误,如“肯定后件”、“否定前件”。 第三章:洞察规律——归纳推理 讲解归纳推理的原理:从特殊到一般。 探讨不同类型的归纳推理,如枚举归纳、类比归纳、统计归纳。 分析归纳推理的局限性,以及如何提高归纳结论的可靠性。 介绍科学研究中归纳推理的应用,例如通过观察现象总结规律。 第四章:连接已知与未知——类比与假设 深入研究类比推理的力量,如何通过比较不同事物之间的相似性来推断新的结论。 学习如何评估类比的有效性,避免表面相似带来的误导。 探讨假设在思维过程中的作用,以及如何提出有价值的假设。 介绍科学研究中猜想与验证的循环过程。 第五章:辨别真伪——批判性思维的基础 定义批判性思维,并阐述其核心要素:分析、评估、推理。 学习识别论证中的前提和结论。 深入讲解各种逻辑谬误,如人身攻击、稻草人谬误、滑坡谬误、诉诸权威等,并提供实例分析。 训练读者运用批判性思维来审视信息,形成独立判断。 第二部分:激发创新的潜能 第六章:打破框架——发散性思维的训练 介绍发散性思维的概念,即从一个起点产生多个不同想法的能力。 学习各种发散性思维技巧,如头脑风暴、思维导图、自由联想、 SCAMPER 方法等。 通过大量的创意练习,激发你的想象力和联想能力。 探讨如何营造一个鼓励发散性思维的环境。 第七章:聚焦精髓——收敛性思维的运用 讲解收敛性思维,即从多个选项中选择最佳解决方案的能力。 介绍决策树、SWOT分析、成本效益分析等收敛性思维工具。 学习如何评估不同想法的优缺点,并做出明智的选择。 强调收敛性思维与发散性思维的辩证统一。 第八章:颠覆传统——逆向思维与横向思维 探索逆向思维,即从结果出发,反推过程,或采取与常规相反的行动。 学习横向思维,即寻找新视角、新联想,打破线性思维的局限。 通过案例分析,展示逆向思维和横向思维在解决难题和创造突破时的威力。 鼓励读者尝试“不可能”的任务,寻找非常规的解决方案。 第九章:跨界融合——知识的整合与创新 强调不同学科、不同领域的知识之间的联系。 学习如何将看似无关的知识点进行有效整合,产生新的创意。 介绍“组合创新”的原理,即通过重新组合现有元素来创造新事物。 鼓励读者保持对广泛知识的好奇心,构建自己的知识网络。 第十章:实践与反思——将思维能力融入生活 讨论如何将所学的思维方法应用于学习、工作和日常生活中。 提供具体的实践指导,例如如何改进学习方法,如何更有效地进行团队合作,如何提高解决问题的效率。 强调持续的实践和自我反思对于思维能力提升的重要性。 引导读者建立终身学习的习惯,不断迭代和优化自己的思维模式。 本书的语言风格将力求清晰、简洁,避免使用过于专业或晦涩的术语,除非有必要进行解释。我们更倾向于通过生动形象的例子、贴近生活的场景来阐述抽象的概念,让读者在轻松愉快的阅读体验中,逐步掌握这些强大的思维工具。我们相信,学习如何像一位优秀的思考者一样去观察、去分析、去创造,不仅仅是一种智力上的提升,更是对生活的一种全新解锁。 《思维的基石:探索逻辑与创新的边界》不仅仅是一本理论书籍,更是一本实践指南。它邀请你走入思维的深处,去发现潜藏在你自身的无限可能。无论你是学生,还是职场人士,亦或是对知识充满好奇的探索者,本书都将为你提供宝贵的启迪和实用的方法,帮助你在信息爆炸的时代,保持清晰的头脑,拥抱创新的勇气,最终成为一个更具洞察力、更富创造力、更自信的思考者。让我们一起,用逻辑构建坚实的基石,用创新点亮未来的边界!

用户评价

评分

坦率地说,这本书的深度远超我最初的想象,它不是那种可以快速翻阅的“快餐读物”。每一次阅读都像是在进行一次智力上的攀登,需要投入时间去消化和咀嚼那些精妙的论证。书中对数学证明的艺术性的探讨,尤其引人入胜。作者没有止步于展示证明的正确性,而是深入挖掘了为什么某个证明结构是“优雅的”或“最具洞察力的”。这种对“美学”的追求,在技术性书籍中是相当罕见的。我尤其赞赏其中关于“反例的力量”的论述,它教会我不要盲目相信既有结论,要学会用最尖锐的问题去挑战框架。虽然某些逻辑推导部分需要我反复回读才能完全掌握,但正是这种适度的挑战,带来了巨大的心智上的满足感。这本书要求读者投入脑力,但它给予的回报是真正的思维上的拓展。

评分

读完这本书,我感觉自己的思维模式经历了一次彻底的“重构”。过去,我总觉得数学是少数天才的专属领域,充满了高不可攀的壁垒。但这本书完全打破了我的这种固有印象。它的语言风格极其亲切和富有鼓动性,仿佛作者就在你身边,用一种非常平易近人的方式与你进行一场深入的对话。书中穿插的那些历史小故事和数学家的轶事,不仅增添了阅读的趣味性,更重要的是,它们揭示了伟大思想是如何在反复试错和深刻反思中诞生的。最让我感到震撼的是它关于“模式识别”的章节,作者提供了一套系统的方法论,教我们如何从看似杂乱无章的信息中捕捉到潜在的规律和结构。这套方法论的普适性超出了我的预期,我尝试将其应用到我的工作报告分析中,结果发现效率和准确性都有了显著提升。这本书提供的不是知识的片段,而是一套可以迁移到生活各个层面的底层操作系统。

评分

这本书的结构设计真是别具匠心,它不是那种堆砌公式和定理的教科书,而更像是一位经验丰富的向导,带着你一步步深入数学思考的殿堂。作者在开篇就非常巧妙地设置了一些看似简单却蕴含深意的哲学问题,引导读者跳出对“答案”的执着,转而关注“过程”和“方法”。我特别欣赏它在介绍基本概念时所采用的“情境化”教学法,比如用日常生活中的例子来阐述抽象的逻辑推理,这使得枯燥的数学概念变得鲜活起来。阅读过程中,我发现自己不再是被动接受知识,而是积极地参与到构建知识体系的过程中。书中对“归纳”与“演绎”的辨析尤其深刻,它不仅解释了它们是什么,更着重探讨了它们在不同学科领域中的应用边界和潜在陷阱。这种强调批判性思维和灵活应用能力的培养,无疑是这本书最大的亮点之一。它让我意识到,数学思维的本质是解决问题的能力,而不仅仅是计算的熟练度。

评分

我一直寻找一本能真正教我“如何思考”的书,而不是仅仅教我“知道什么”的书,而这本恰好满足了我的需求。它在方法论上的贡献是革命性的。书中有一章专门讨论了如何构建一个有效的思维模型来解决开放性问题,其中引入的几个“思考工具箱”的概念,对我产生了立竿见影的效果。这些工具箱不是固定的公式,而是灵活的思维框架,可以根据问题的性质进行动态调整。作者在论证过程中所展现的严密性和对逻辑链条的完美掌控,本身就是最好的示范。它教会我的最重要一课是:面对复杂问题时,不要急于求解,而是应该先花大力气去定义问题、分解问题、并为问题建立一个清晰的数学或逻辑结构。这本书更像是一把钥匙,它开启了我通往更清晰、更有条理的认知世界的大门。

评分

这本书在叙事节奏的把握上达到了近乎完美的平衡。它巧妙地将严谨的数学逻辑与宽泛的哲学思考编织在一起,使得阅读体验既充实又不至于感到沉重。我特别喜欢书中那些关于“无限”和“不确定性”的讨论,它们以一种非常清晰和令人信服的方式,将现代数学的前沿思想带到了普通读者的面前。作者展现出一种罕见的驾驭复杂概念的能力,能够将那些原本可能需要数年专业训练才能理解的抽象概念,提炼成易于理解的隐喻和模型。例如,它对“集合论基础”的介绍,不是直接搬运公理,而是通过一个关于分类和边界的寓言故事来展开,这种叙事手法极大地降低了读者的心理门槛。它成功地做到了“深入浅出”,让我们在享受阅读乐趣的同时,不知不觉中就提升了自己的抽象思维能力。

评分

训练数学思维

评分

感觉不值。太短了。。。

评分

评分

一般吧。开头的架势很大,说什么“这本书会带给你答案”,但是后面却没有很震撼、让人耳目一新的感觉。其实关键之处不在于书而在于悟,这本书要配合着Coursera的课程去学,而且最好能和同学讨论,那种希望“看书就能领会其中奥妙”的想法有些不实际。

评分

很薄,很好

评分

物美价廉好货色。

评分

给小孩子看的,培养一下数学思维。

评分

不错。。。。。。。。。。。。。。。。。。。。

评分

gooooooooooooooooooooooooood

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou 等,本站所有链接都为正版商品购买链接。

© 2025 windowsfront.com All Rights Reserved. 静流书站 版权所有