纯粹数学与应用数学专著:随机动力系统导论(英文) [An Introduction to Stochastic Dynamics] pdf epub mobi txt 电子书 下载 2024

图书介绍


纯粹数学与应用数学专著:随机动力系统导论(英文) [An Introduction to Stochastic Dynamics]

简体网页||繁体网页
段金桥 著



点击这里下载
    


想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-04-29

类似图书 点击查看全场最低价

出版社: 科学出版社
ISBN:9787030438577
版次:1
商品编码:11682525
包装:平装
丛书名: 纯粹数学与应用数学专著
外文名称:An Introduction to Stochastic Dynamics
开本:16开
出版时间:2015-01-01
用纸:胶版纸
页数:283
正文语种:英文

纯粹数学与应用数学专著:随机动力系统导论(英文) [An Introduction to Stochastic Dynamics] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

相关图书



纯粹数学与应用数学专著:随机动力系统导论(英文) [An Introduction to Stochastic Dynamics] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

纯粹数学与应用数学专著:随机动力系统导论(英文) [An Introduction to Stochastic Dynamics] pdf epub mobi txt 电子书 下载



具体描述

内容简介

  随机动力系统是一个入门较难的新兴领域。
  《纯粹数学与应用数学专著:随机动力系统导论(英文)》是这个领域的一个较为通俗易懂的引论。
  在《纯粹数学与应用数学专著:随机动力系统导论(英文)》的第一部分,作者从简单的随机动力系统实际例子出发,引导读者回顾概率论和白噪声的基本知识,深入浅出地介绍随机微积分,然后自然地展开随机微分方程的讨论。

目录

Chapter 1 Introduction
1.1 Examples of deterministic dynamical systems
1.2 Examples of stochastic dynamical systems
1.3 Mathematical modeling with stochastic differential equations
1.4 Outline of this book
1.5 Problems

Chapter 2 Background in Analysis and Probability
2.1 Euclidean space
2.2 Hilbert, Banach and metric spaces
2.3 Taylor expansions
2.4 Improper integrals and Cauchy principal values
2.5 Some useful inequalities
2.5.1 Young's inequality
2.5.2 Cronwall inequality
2.5.3 Cauchy-Schwaxz inequality
2.5.4 HSlder inequality
2.5.5 Minkowski inequality
2.6 HSlder spaces, Sobolev spaces and related inequalities
2.7 Probability spaces
2.7.1 Scalar random variables
2.7.2 Random vectors
2.7.3 Gaussian random variables
2.7.4 Non-Gaussian random variables
2.8 Stochastic processes
2.9 Coovergence concepts
2.10 Simulation
2.11 Problems

Chapter 3 Noise
3.1 Brownian motion
3.1.1 Brownian motion in R1
3.1.2 Brownian motion in Rn~
3.2 What is Gaussian white noise
3.3* A mathematical model for Gaussian white noise
3.3.1 Generalized derivatives
3.3.2 Gaussian white noise
3.4 Simulation
3.5 Problems

Chapter 4 A Crash Course in Stochastic Differential Equations
4.1 Differential equations with noise
4.2 Riemann-Stieltjes integration
4.3 Stochastic integration and stochastic differential equations
4.3.1 Motivation
4.3.2 Definition of It5 integral
4.3.3 Practical calculations
4.3.4 Stratonovich integral
4.3.5 Examples
4.3.6 Properties of It6 integrals
4.3.7 Stochastic differential equations
4.3.8 SDEs in engineering and science literature
4.3.9 SDEs with two-sided Brownian motions
4.4 It's formula
4.4.1 Motivation for stochasticChain rules
4.4.2 ItS's formula in scalar case
4.4.3 It6's formula in vector case
4.4.4 Stochastic product rule and integration by parts
4.5 Linear stochastic differential equations
4.6 Nonlinear stochastic differential equations
4.6.1 Existence, uniqueness and smoothness
4.6.2 Probability measure px and expectation Ex associated with an SDE
4.7 Conversion between It5 and Stratonovich stochastic differential equations
4.7.1 Scalar SDEs
4.7.2 SDE systems
4.8 Impact of noise on dynamics
4.9 Simulation
4.10 Problems

Chapter 5 Deterministic Quantities for Stochastic Dynamics
5.1 Moments
5.2 Probability density functions
5.2.1 Scalar Fokker-Planck equations
5.2.2 Multidimensional Fokker-Planck equations
5.2.3 Existence and uniqueness for Fokker-Planck equations
5.2.4 Likelihood for transitions between different dynamical regimes under uncertainty
5.3 Most probable phase portraits
5.3.1 Mean phase portraits
5.3.2 Almost sure phase portraits
5.3.3 Most probable phase portraits
5.4 Mean exit time
5.5 Escape probability
5.6 Problems

Chapter 6 Invariant Structures for Stochastic Dynamics
6.1 Deterministic dynamical systems
6.1.1 Concepts for deterministic dynamical systems
6.1.2 The Haxtman-Grobman theorem
6.1.3 Invariant sets
6.1.4 Differentiable manifolds
6.1.5 Deterministic invariant manifolds
6.2 Measurable dynamical systems
6.3 Random dynamical systems
6.3.1 Canonical sample spaces for SDEs
6.3.2 Wiener shift
6.3.3 Cocycles and random dynamical systems
6.3.4 Examples of cocycles
6.3.5 Structural stability and stationary orbits
6.4 Linear stochastic dynamics
6.4.1 Oseledets' multiplicative ergodic theorem and Lyapunov exponents"
6.4.2 A stochastic Hartman-Grobman theorem
6.5* Random invariant manifolds
6.5.1 Definition of random invariant manifolds
6.5.2 Converting SDEs to RDEs
6.5.3 Local random pseudo-stable and pseudo-unstable manifolds
6.5.4 Local random stable, unstable and center manifolds
6.6 Problems

Chapter 7 Dynamical Systems Driven by Non-Gaussian Levy Motions
7.1 Modeling via stochastic differential equations with Levy motions
7.2 Levy motions
7.2.1 Functions that have one-side limits
7.2.2 Levy-Ito decomposition
7.2.3 Levy-Khintchine formula
7.2.4 Basic properties of Levy motions
7.3 s-stable Levy motions
7.3.1 Stable random variables
7.3.2 a-stable Levy motions in R1
7.3.3 a-stable Levy motion in Rn
7.4 Stochastic differential equations with Levy motions
7.4.1 Stochastic integration with respect to Levy motions
7.4.2 SDEs with Levy motions
7.4.3 Generators for SDEs with Levy motion
7.5 Mean exit time
7.5.1 Mean exit time for a-stable Levy motion
7.5.2 Mean exit time for SDEs with a-stable Levy motion
7.6 Escape probability and transition phenomena
7.6.1 Balayage-Dirichlet problem for escape probability
7.6.2 Escape probability for a-stable Levy motion
7.6.3 Escape probability for SDEs with a-stable Levy motion
7.7 Fokker-Planck equations
7.7.1 Fokker-Planck equations in R1
7.7.2 Fokker-Planck equations in Rn
7.8 Problems

Hints and Solutions
Further Readings
References
Index
Color Pictures

精彩书摘

  《纯粹数学与应用数学专著:随机动力系统导论(英文)》:
  Chapter 1
  Introduction
  Noisy fluctuations are abundant in complex systems. In some cases, noise is not negligible, whereas in some other situations, noise could even be beneficial. It is desirable to have a better understanding of the impact of noise on dynamical evo?lution of complex systems. In other words, it becomes crucial to take randomness into account in mathematical modeling of complex phenomena under uncertainty.
  In 1908, Langevin devised a stochastic differential equation for the motion of Brownian particles in a fluid, under random impacts of surrounding fluid molecules. This stochastic differential equation, although important for understanding Brownian motion, went largely unnoticed in the mathematical community until after stochastic calculus emerged in the late 1940s. Introductory books on stochastic differential equations (SDEs) include [8,88,213].
  The goal for this book is to examine and present select dynamical systems concepts, tools, and methods for understanding solutions of SDEs. To this end, we also need basic information about deterministic dynamical systems modeled by ordinary differential equations (ODEs), as presented in the first couple of chapters in one of the references [110,290].
  In this introductory chapter, we present a few examples of deterministic and stochastic dynamical systems, then briefly outline the contents of this book.
  1.1 Examples of deterministic dynamical systems
  We recall a few examples of deterministic dynamical systems, where short time-scale forcing and nonlinearity can affect dynamics in a profound way.
  Example 1.1 A double-well system.
  Consider a one-dimensional dynamical system x = x - x3. It has three equilib?rium states, -1,0 and 1,at which the vector field x - x3 is zero. Observe that
  Note that x = x - x3 = -4,where the potential function V(x) = -gx2 + ^x4 has two minimal values (sometimes called “wells”),see Figure 1.1.
  Figure 1.1 Plot of
  A solution curve, or orbit, or trajectory, starting with x(0) = xo in (-1,0), decreases in time (because 士 < 0 on this interval) and approaches the equilibrium state - 1 as t ^ +oo, whereas an orbit starting with x(0) = xo in (-oo, -1), increases in time (because x > 0 on this interval) and approaches the equilibrium state - 1 as t +oo. Thus the equilibrium point {-1} is a stable equilibrium state and it is an attractor, i.e., it attracts nearby orbits. Likewise {1} is also an attractor. But the equilibrium state {0} is unstable and is called an repeller. See Figure 1.2 for a few representative solutions curves.
  An orbit starting near one equilibrium state {-1} can not go anywhere near the other equilibrium state {1}, and vice versa. There is no transition between these two stable states.
  If we only look at the solution curves in the state space, E1, wherestate xlives,
  we get a state portrait, or as often called, a phase portrait.
  ……

前言/序言


纯粹数学与应用数学专著:随机动力系统导论(英文) [An Introduction to Stochastic Dynamics] 电子书 下载 mobi epub pdf txt

纯粹数学与应用数学专著:随机动力系统导论(英文) [An Introduction to Stochastic Dynamics] pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

类似图书 点击查看全场最低价

纯粹数学与应用数学专著:随机动力系统导论(英文) [An Introduction to Stochastic Dynamics] pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


纯粹数学与应用数学专著:随机动力系统导论(英文) [An Introduction to Stochastic Dynamics] bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 windowsfront.com All Rights Reserved. 静流书站 版权所有