中外物理学精品书系:玻色-爱因斯坦凝聚的基础与前沿(英文影印版) pdf epub mobi txt 电子书 下载 2025

图书介绍


中外物理学精品书系:玻色-爱因斯坦凝聚的基础与前沿(英文影印版)

简体网页||繁体网页
[日] 上田正仁 著



点击这里下载
    


想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-22

类似图书 点击查看全场最低价

出版社: 北京大学出版社
ISBN:9787301251737
版次:1
商品编码:11621120
包装:平装
丛书名: 中外物理学精品书系
开本:16开
出版时间:2015-01-01
用纸:胶版纸
页数:372

中外物理学精品书系:玻色-爱因斯坦凝聚的基础与前沿(英文影印版) epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2025

相关图书



中外物理学精品书系:玻色-爱因斯坦凝聚的基础与前沿(英文影印版) epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2025

中外物理学精品书系:玻色-爱因斯坦凝聚的基础与前沿(英文影印版) pdf epub mobi txt 电子书 下载



具体描述

编辑推荐

  玻色爱因斯坦凝聚是神奇而富有魅力的物理现象。相关研究已经使多位科学家获得了诺贝尔奖。目前。关于冷原子的研究正蓬勃展开,玻色爱因斯坦凝聚正是其理论基础。《中外物理学精品书系:玻色-爱因斯坦凝聚的基础与前沿(英文影印版)》对于相关领域的研究人员来说是不可错过的佳作。

内容简介

  《中外物理学精品书系:玻色-爱因斯坦凝聚的基础与前沿(英文影印版)》首先介绍了玻色-爱因斯坦凝聚(BEC)的基本理论。之后,《中外物理学精品书系:玻色-爱因斯坦凝聚的基础与前沿(英文影印版)》讨论了快速旋转BEC,旋量和偶极BEC,低维BEC等近来发展迅速的方向。本书还介绍了平衡或非平衡费米液体超流,包括BCS-BEC交叉、幺正气体、p波超流等。本书适合本领域的研究者和研究生阅读。

作者简介

  (日)上田正仁,日本东京大学教授。

目录

Preface v
1. Fundamentals of Bose-Einstein Condensation 1
1.1 Indistinguishability of Identical Particles . . . . . . . . . . 1
1.2 Ideal Bose Gas in a Uniform System . . . . . . . . . . . . 3
1.3 Off-Diagonal Long-Range Order: Bose System . . . . . . 6
1.4 Off-Diagonal Long-Range Order: Fermi System . . . . . . 10
1.5 U(1)Gauge Symmetry . . . . . . . . . . . . . . . . . . . . 11
1.6 Ground-State Wave Function of a Bose System . . . . . . 13
1.7 BEC and Superfluidity . . . . . . . . . . . . . . . . . . . . 15
1.8 Two-FluidModel . . . . . . . . . . . . . . . . . . . . . . . 20
1.9 Fragmented Condensate . . . . . . . . . . . . . . . . . . . 23
1.9.1 Two-statemodel . . . . . . . . . . . . . . . . . . . 23
1.9.2 Degenerate double-well model . . . . . . . . . . . 25
1.9.3 Spin-1 antiferromagnetic BEC . . . . . . . . . . . 27
1.10 Interference Between Independent Condensates . . . . . . 28
1.11 Feshbach Resonance . . . . . . . . . . . . . . . . . . . . . 31
2. Weakly Interacting Bose Gas 33
2.1 Interactions Between Neutral Atoms . . . . . . . . . . . . 33
2.2 Pseudo-PotentialMethod . . . . . . . . . . . . . . . . . . 36
2.3 Bogoliubov Theory . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 Bogoliubov transformations . . . . . . . . . . . . . 40
2.3.2 Bogoliubov ground state . . . . . . . . . . . . . . 45
2.3.3 Low-lying excitations and condensate fraction . . 48
2.3.4 Properties of Bogoliubov ground state . . . . . . . 50
2.4 Bogoliubov Theory of Quasi-One-Dimensional Torus . . . 54
2.4.1 Case of BEC at rest: stability of BEC . . . . . . . 55
2.4.2 Case of rotating BEC: Landau criterion . . . . . . 56
2.4.3 Ground state of BEC in rotating torus . . . . . . 59
2.5 Bogoliubov-deGennes (BdG) Theory . . . . . . . . . . . 60
2.6 Method of Binary Collision Expansion . . . . . . . . . . . 65
2.6.1 Equation of state . . . . . . . . . . . . . . . . . . 65
2.6.2 Cluster expansion of partition function . . . . . . 66
2.6.3 Ideal Bose and Fermi gases . . . . . . . . . . . . . 67
2.6.4 Matsubara formula . . . . . . . . . . . . . . . . . 69
3. Trapped Systems 73
3.1 Ideal Bose Gas in a Harmonic Potential . . . . . . . . . . 73
3.1.1 Transition temperature . . . . . . . . . . . . . . . 75
3.1.2 Condensate fraction . . . . . . . . . . . . . . . . . 76
3.1.3 Chemical potential . . . . . . . . . . . . . . . . . 77
3.1.4 Specific heat . . . . . . . . . . . . . . . . . . . . . 77
3.2 BEC in One- and Two-Dimensional Parabolic Potentials . 79
3.2.1 Density of states . . . . . . . . . . . . . . . . . . . 79
3.2.2 Transition temperature . . . . . . . . . . . . . . . 79
3.2.3 Condensate fraction . . . . . . . . . . . . . . . . . 80
3.3 Semiclassical Distribution Function . . . . . . . . . . . . . 81
3.4 Gross-Pitaevskii Equation . . . . . . . . . . . . . . . . . . 83
3.5 Thomas-Fermi Approximation . . . . . . . . . . . . . . . 84
3.6 Collective Modes in the Thomas-Fermi Regime . . . . . . 88
3.6.1 Isotropic harmonic potential . . . . . . . . . . . . 89
3.6.2 Axisymmetric trap . . . . . . . . . . . . . . . . . 91
3.6.3 Scissorsmode . . . . . . . . . . . . . . . . . . . . 92
3.7 VariationalMethod . . . . . . . . . . . . . . . . . . . . . . 93
3.7.1 Gaussian variational wave function . . . . . . . . 94
3.7.2 Collectivemodes . . . . . . . . . . . . . . . . . . . 96
3.8 Attractive Bose-Einstein Condensate . . . . . . . . . . . . 98
3.8.1 Collectivemodes . . . . . . . . . . . . . . . . . . . 99
3.8.2 Collapsing dynamics of an attractive condensate . 102
4. Linear Response and Sum Rules 105
4.1 Linear Response Theory . . . . . . . . . . . . . . . . . . . 105
4.1.1 Linear response of density fluctuations . . . . . . 105
4.1.2 Retarded response function . . . . . . . . . . . . . 108
4.2 Sum Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2.1 Longitudinal f-sumrule . . . . . . . . . . . . . . 110
4.2.2 Compressibility sum rule . . . . . . . . . . . . . . 112
4.2.3 Zero energy gap theorem . . . . . . . . . . . . . . 114
4.2.4 Josephson sum rule . . . . . . . . . . . . . . . . . 115
4.3 Sum-Rule Approach to CollectiveModes . . . . . . . . . . 120
4.3.1 Excitation operators . . . . . . . . . . . . . . . . . 121
4.3.2 Virial theorem . . . . . . . . . . . . . . . . . . . . 122
4.3.3 Kohn theorem . . . . . . . . . . . . . . . . . . . . 123
4.3.4 Isotropic trap . . . . . . . . . . . . . . . . . . . . 124
4.3.5 Axisymmetric trap . . . . . . . . . . . . . . . . . 127
5. Statistical Mechanics of Superfluid Systems in a Moving Frame 129
5.1 Transformation toMoving Frames . . . . . . . . . . . . . 129
5.2 Elementary Excitations of a Superfluid . . . . . . . . . . . 131
5.3 Landau Criterion . . . . . . . . . . . . . . . . . . . . . . . 133
5.4 Correlation Functions at Thermal Equilibrium . . . . . . 134
5.5 Normal Fluid Density . . . . . . . . . . . . . . . . . . . . 136
5.6 Low-Lying Excitations of a Superfluid . . . . . . . . . . . 140
5.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.7.1 Ideal Bose gas . . . . . . . . . . . . . . . . . . . . 141
5.7.2 Weakly interacting Bose gas . . . . . . . . . . . . 143
6. Spinor Bose-Einstein Condensate 145
6.1 Internal Degrees of Freedom . . . . . . . . . . . . . . . . . 145
6.2 General Hamiltonian of Spinor Condensates . . . . . . . . 146
6.3 Spin-1 BEC . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.1 Mean-field theory of a spin-1 BEC . . . . . . . . . 153
6.3.2 Many-body states in single-mode approximation . 157
6.3.3 Superflow, spin texture, and Berry phase . . . . . 161
6.4 Spin-2 BEC . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7. Vortices 171
7.1 Hydrodynamic Theory of Vortices . . . . . . . . . . . . . 171
7.2 Quantized Vortices . . . . . . . . . . . . . . . . . . . . . . 174
7.3 Interaction Between Vortices . . . . . . . . . . . . . . . . 180
7.4 Vortex Lattice . . . . . . . . . . . . . . . . . . . . . . . . 181
7.4.1 Dynamics of vortex nucleation . . . . . . . . . . . 181
7.4.2 Collective modes of a vortex lattice . . . . . . . . 183
7.5 FractionalVortices . . . . . . . . . . . . . . . . . . . . . . 186
7.6 Spin Current . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.7 Fast Rotating BECs . . . . . . . . . . . . . . . . . . . . . 189
7.7.1 Lowest Landau level approximation . . . . . . . . 189
7.7.2 Mean field quantum Hall regime . . . . . . . . . . 192
7.7.3 Many-body wave functions of a fast
rotating BEC . . . . . . . . . . . . . . . . . . . . 194
8. Fermionic Superfluidity 197
8.1 Ideal Fermi Gas . . . . . . . . . . . . . . . . . . . . . . . . 197
8.2 Fermi Liquid Theory . . . . . . . . . . . . . . . . . . . . . 200
8.3 Cooper Problem . . . . . . . . . . . . . . . . . . . . . . . 205
8.3.1 Two-body problem . . . . . . . . . . . . . . . . . 205
8.3.2 Many-body problem . . . . . . . . . . . . . . . . . 209
8.4 Bardeen-Cooper-Schrieffer (BCS) Theory . . . . . . . . . 211
8.5 BCS-BEC Crossover at T =0 . . . . . . . . . . . . . . . . 215
8.6 Superfluid Transition Temperature . . . . . . . . . . . . . 219
8.7 BCS-BEC Crossover at T _=0 . . . . . . . . . . . . . . . . 221
8.8 Gor'kov-Melik-Barkhudarov Correction . . . . . . . . . . 225
8.9 Unitary Gas . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.10 Imbalanced Fermi Systems . . . . . . . . . . . . . . . . . . 231
8.11 P-Wave Superfluid . . . . . . . . . . . . . . . . . . . . . . 234
8.11.1 Generalized pairing theory . . . . . . . . . . . . . 234
8.11.2 Spin-triplet p-wave states . . . . . . . . . . . . . . 238
9. Low-Dimensional Systems 241
9.1 Non-interacting Systems . . . . . . . . . . . . . . . . . . . 241
9.2 Hohenberg-Mermin-Wagner Theorem . . . . . . . . . . . 243
9.3 Two-Dimensional BEC at Absolute Zero . . . . . . . . . . 246
9.4 Berezinskii-Kosterlitz-Thouless Transition . . . . . . . . . 247
9.4.1 Universal jump . . . . . . . . . . . . . . . . . . . . 247
9.4.2 Quasi long-range order . . . . . . . . . . . . . . . 249
9.4.3 Renormalization-group analysis . . . . . . . . . . 250
9.5 Quasi One-Dimensional BEC . . . 中外物理学精品书系:玻色-爱因斯坦凝聚的基础与前沿(英文影印版) 电子书 下载 mobi epub pdf txt

中外物理学精品书系:玻色-爱因斯坦凝聚的基础与前沿(英文影印版) pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

帮别人买的书,很好方便快捷不用跑书店

评分

还行。。。。。。。。

评分

好好好好好好好好好好好好好好好好好好

评分

评分

好好好好好好好好好好好好好好好好好好

评分

评分

《中外物理学精品书系:超冷量子气体》将介绍超冷原子和分子体系中的少体和多体物理性质。拟包括的内容有:超冷原子物理发展回顾与简介,原子结构,散射理论基础,激光冷却与原子捕陷,玻色爱因斯坦凝聚,Feshbach共振,超冷费米气体中的BCS-BEC过渡,光晶格中的超冷原子物理与量子仿真,准低维系统(包括少体问题和多体问题),超冷分子和超冷化学,基于超冷原子的量子调控,以及超冷量子气体的最新进展等。《中外物理学精品书系:超冷量子气体》的目标读者是物理专业高年级研究生以及对本领域有兴趣的研究人员,通过综述近十余年研究的最新进展,期望对他们进入该领域有所帮助。

评分

 玻色爱因斯坦凝聚是神奇而富有魅力的物理现象。相关研究已经使多位科学家获得了诺贝尔奖。目前。关于冷原子的研究正蓬勃展开,玻色爱因斯坦凝聚正是其理论基础。《中外物理学精品书系:玻色-爱因斯坦凝聚的基础与前沿(英文影印版)》对于相关领域的研究人员来说是不可错过的佳作。

评分

不错不错!东西不错!不错不错!东西不错!

类似图书 点击查看全场最低价

中外物理学精品书系:玻色-爱因斯坦凝聚的基础与前沿(英文影印版) pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


中外物理学精品书系:玻色-爱因斯坦凝聚的基础与前沿(英文影印版) bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 windowsfront.com All Rights Reserved. 静流书站 版权所有