这套数学分析教程,是南京大学80年代编写的一套数学分析教材,一直作为南京大学数学系的教学用书。这套书与其他的同类教材编写略有不同,添加了一些实分析中的内容,将实变函数中的囿变函数,RS积分等内容添加进去,这是很不错的尝试。此次再版,弥补了不曾拥有拥有一套的缺憾。
评分8,整环的分式域、有理函数域、最简分式、Bezout定理、多项式函数环、Laglrange与Newton插值公式、多项式环的微分法、Vieta公式、对称与斜对称函数、Wilson定理。
评分2,多项式矩阵、多项式矩阵的初等变换、多项式矩阵的相抵、Smith标准型、行列式因子、不变因子、初等因子组、特征方阵与Jordan标准型的关系、实方阵的实相似。
评分10,一般域上的线性空间、子空间、线性相关、线性无关、向量组的秩、基与维数、不同基之间的过渡矩阵、线性空间的同构、子空间的交与和、维数定理、直和、补空间、商空间、线性函数、对偶空间、线性无关的判别法。
评分4,Euclid空间、内积、标准正交基、Gram-Schmidt正交化过程、Euclid 空间的同构、正交矩阵、正交群、辛空间、辛群、辛算子、酉空间、Hermite型、酉矩阵、酉群、赋范线性空间、按模收敛、绝对收敛。
评分8,整环的分式域、有理函数域、最简分式、Bezout定理、多项式函数环、Laglrange与Newton插值公式、多项式环的微分法、Vieta公式、对称与斜对称函数、Wilson定理。
评分 评分10,一般域上的线性空间、子空间、线性相关、线性无关、向量组的秩、基与维数、不同基之间的过渡矩阵、线性空间的同构、子空间的交与和、维数定理、直和、补空间、商空间、线性函数、对偶空间、线性无关的判别法。
评分9,对称多项式环、多称多项式的基本定理、待定系数法、等幂和、Newton公式、多项式的判别式、结式、复数域的代数封闭性、代数基本定理、Strum定理、多项式根的近似算法、整系数多项式的有理根。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 windowsfront.com All Rights Reserved. 静流书站 版权所有