綫性代數群 [Linear Algebraic Groups] pdf epub mobi txt 電子書 下載 2024

圖書介紹


綫性代數群 [Linear Algebraic Groups]

簡體網頁||繁體網頁
[美] 以弗萊斯 著



點擊這裡下載
    

想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-18


類似圖書 點擊查看全場最低價

齣版社: 世界圖書齣版公司
ISBN:9787510004414
版次:1
商品編碼:10857737
包裝:平裝
外文名稱:Linear Algebraic Groups
開本:16開
齣版時間:2009-04-01
用紙:膠版紙
頁數:253
正文語種:英文

綫性代數群 [Linear Algebraic Groups] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

相關圖書



綫性代數群 [Linear Algebraic Groups] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

綫性代數群 [Linear Algebraic Groups] pdf epub mobi txt 電子書 下載



具體描述

內容簡介

For this printing, I have corrected some errors and made numerous minor changes in the interest of clarity. The most significant corrections occur in Sections 4.2, 4.3, 5.5, 30.3, 32.1, and 32.3. I have also updated the biblio-graphy to some extent. Thanks are due to a number of readers who took the trouble to point out errors, or obscurities; especially helpful were the detailed comments of Jose Antonio Vargas.

內頁插圖

目錄

I.AlgebraicGeometry
0.SomeCommutativeAlgebra
1.AffineandProjectiveVarieties
1.1 IdealsandAflineVarieties
1.2 ZariskiTopologyonAffineSpace
1.3 IrreducibleComponents
1.4 ProductsofAffineVarieties
1.5 AffineAlgebrasandMorphisms
1.6 ProjectiveVarieties
1.7 ProductsofProjectiveVarieties
1.8 FlagVarieties

2.Varieties
2.1 LocalRings
2.2 Prevarieties
2.3 Morphisms
2.4 Products
2.5 HausdorffAxiom

3.Dimension
3.1 DimensionofaVariety
3.2 DimensionofaSubvariety
3.3 DimensionTheorem
3.4 Consequences

4.Morphisms
4.1 FibresofaMorphism
4.2 FiniteMorphisms
4.3 ImageofaMorphism
4.4 ConstructibleSets
4.5 OpenMorphisms
4.6 BijectiveMorphisms
4.7 BirationalMorphisms

5.TangentSpaces
5.1 ZariskiTangentSpace
5.2 ExistenceofSimplePoints
5.3 LocalRingofaSimplePoint
5.4 DifferentialofaMorphism
5.5 DifferentialCriterionforSeparability

6.CompleteVarieties
6.1 BasicProperties
6.2 CompletenessofProjectiveVarieties
6.3 VarietiesIsomorphictoP
6.4 AutomorphismsofP
II.AflineAlgebraicGroups

7.BasicConceptsandExamples
7.1 TheNotionofAlgebraicGroup
7.2 SomeClassicalGroups
7.3 IdentityComponent
7.4 SubgroupsandHomomorphisms
7.5 GenerationbyIrreducibleSubsets
7.6 HopfAIgebras

8.ActionsofAlgebraicGroupsonVarieties
8.1 GroupActions
8.2 ActionsofAlgebraicGroups
8.3 ClosedOrbits
8.4 SemidirectProducts
8.5 TranslationofFunctions
8.6 LinearizationofAffineGroups
III.LieAlgebras

9.LieAlgebraofanAlgebraicGroup
9.1 LieAlgebrasandTangentSpaces
9.2 Convolution
9.3 Examples
9.4 SubgroupsandLieSubalgebras
9.5 DualNumbers

10.Differentiation
10.1 SomeElementaryFormulas
10.2 DifferentialofRightTranslation
10.3 TheAdjointRepresentation
10.4 DifferentialofAd
10.5 Commutators
10.6 Centralizers
10.7 AutomorphismsandDerivations
IV.HomogeneousSpaces

11.ConstructionofCertainRepresentations
11.1 ActiononExteriorPowers
11.2 ATheoremofChevalley
11.3 PassagetoProjectiveSpace
11.4 CharactersandSemi-lnvariants
11.5 NormalSubgroups

12.Quotients
12.1 UniversalMappingProperty
12.2 TopologyofY
12.3 FunctionsonY
12.4 Complements
12.5 Characteristic0
V.Characteristic0Theory

13.CorrespondenceBetweenGroupsandLieAlgebras
13.1 TheLatticeCorrespondence
13.2 InvariantsandInvariantSubspaces
13.3 NormalSubgroupsandIdeals
13.4 CentersandCentralizers
13.5 SemisimpleGroupsandLieAlgebras

14.SemisimpleGroups
14.1 TheAdjointRepresentation
14.2 SubgroupsoraSemisimpleGroup
14.3 CompleteReducibilityofRepresentations
VI.SemisimpleandUnipotentElements

15.Jordan-ChevalleyDecomposition
15.1 DecompositionofaSingleEndomorphism
15.2 GL(n,K)andgl(n,K)
15.3 JordanDecompositioninAlgebraicGroups
15.4 CommutingSetsofEndomorphisms
15.5 StructureofCommutativeAlgebraicGroups

16.DiagonalizableGroups
16.1 Charactersandd-Groups
16.2 Tori
16.3 RigidityofDiagonalizableGroups
16.4 WeightsandRoots
VII.SolvableGroups

17.NilpotentandSolvableGroups
17.1 AGroup-TheoreticLemma
17.2 CommutatorGroups
17.3 SolvableGroups
17.4 NilpotentGroups
17.5 UnipotentGroups
17.6 Lie-KolchinTheorem

18.SemisimpleElements
18.1 GlobalandInfinitesimalCentralizers
18.2 ClosedConjugacyClasses
18.3 ActionofaSemisimpleElementonaUnipotentGroup
18.4 ActionofaDiagonalizableGroup

19.ConnectedSolvableGroups
19.1 AnExactSequence
19.2 TheNilpotentCase
19.3 TheGeneralCase
19.4 NormalizerandCentralizer
19.5 SolvableandUnipotentRadicals

20.OneDimensionalGroups
20.1 CommutativityofG
20.2 VectorGroupsande-Groups
20.3 Propertiesofp-Polynomials
20.4 AutomorphismsofVectorGroups
20.5 TheMainTheorem
VIII.BorelSubgroups

21.FixedPointandConjugacyTheorems
21.1 ReviewofCompleteVarieties
21.2 FixedPointTheorem
21.3 ConjugacyofBorelSubgroupsandMaximalTori
21.4 FurtherConsequences

22.DensityandConnectednessTheorems
22.1 TheMainLemma
22.2 DensityTheorem
22.3 ConnectednessTheorem
22.4 BorelSubgroupsofCG(S)
22.5 CartanSubgroups:Summary

23.NormalizerTheorem
23.1 StatementoftheTheorem
23.2 ProofoftheTheorem
23.3 TheVarietyG/B
23.4 Summary
IX.CentralizersofTori

24.RegularandSingularTori
24.1 WeylGroups
24.2 RegularTori
24.3 SingularToriandRoots
24.4 Regular1-ParameterSubgroups

25.ActionofaMaximalTorusonG/B
25.1 Actionofa1-ParameterSubgroup
25.2 ExistenceofEnoughFixedPoints
25.3 GroupsofSemisimpleRank1
25.4 WeylChambers

26.TheUnipotentRadical
26.1 CharacterizationofRu(G)
26.2 SomeConsequences
26.3 TheGroupsUa
X.StructureofReductiveGroups

27.TheRootSystem
27.1 AbstractRootSystems
27.2 TheIntegralityAxiom
27.3 SimpleRoots
27.4 TheAutomorphismGroupofaSemisimpleGroup
27.5 SimpleComponents

28.BruhatDecomposition
28.1 T-StableSubgroupsofBu
28.2 GroupsofSemisimpleRank1
28.3 TheBruhatDecomposition
28.4 NormalForminG
28.5 Complements

29.TitsSystems
29.1 Axioms
29.2 BruhatDecomposition
29.3 ParabolicSubgroups
29.4 GeneratorsandRelationsforW
29.5 NormalSubgroupsofG

30.ParabolicSubgroups
30.1 StandardParabolicSubgroups
30.2 LeviDecompositions
30.3 ParabolicSubgroupsAssociatedtoCertainUnipotentGroups
30.4 MaximalSubgroupsandMaximalUnipotentSubgroups
XI.RepresentationsandClassificationofSemisimpleGroups

31.Representations
31.1 Weights
31.2 MaximalVectors
31.3 IrreducibleRepresentations
31.4 ConstructionofIrreducibleRepresentations
31.5 MultiplicitiesandMinimalHighestWeights
31.6 ContragredientsandInvariantBilinearForms

32.IsomorphismTheorem
32.1 TheClassificationProblem
32.2 ExtensionofψTtoN(T)
32.3 ExtensionofψTtoZa
32.4 ExtensionofψTtoTUa
32.5 ExtensionofψTtoB
32.6 Multiplicativityofψ

33.RootSystemsofRank2
33.1 Reformulationof(A),(B),(C)
33.2 SomePreliminaries
33.3 TypeA2
33.4 TypeB2
33.5 TypeG2
33.6 TheExistenceProblem
XII.SurveyofRationalityProperties

34.FieldsofDefinition
34.1 Foundations
34.2 ReviewofEarlierChapters
34.3 Tori
34.4 SomeBasicTheorems
34.5 Borei-TitsStructureTheory
34.6 AnExample:OrthogonalGroups

35.SpecialCases
35.1 SplitandQuasisplitGroups
35.2 FiniteFields
35.3 TheRealField
35.4 LocalFields
35.5 Classification
Appendix.RootSystems
Bibliography
IndexofTerminology
IndexofSymbols

精彩書摘

Over the last two decades the Borel-Chevalley theory of Iinear algebraic groups(as further developed by Borel,Steinberg,Tits,and others)has made possible significant progress In a aurabef of areas:scmisimple Lie groups and arithmetic subgroups,p-adic groups,classical linear groups,finite simple groups,invariant theory。etc.Unfortunately,the subject has not been as accessible as it ought to be.in part due to the fairly substantial background in algebraic geometry assumed by Chevalley ,Borei , Borel,Tits .The difliculty of the theory also stems in Dart from the fact that the main results culminate a Iong series of arguments which are hard to“see through”from beginning to end.In writing this introductory text. aimed at the second year graduate level.I have tried to take these factors into account.
First.the requisite algebraic geometry has been treated in fullin Chapter I.modulo some more.or-less standard results from commutative algebra (quoted in§o),e.g.,the theorem that a regular local ring is an integrally closed domain.The treatment is intentionally somewhat crude and is not at all scheme-oriented.In fact.everything is done over an algebraically closed field K(of arbitrary characteristic).even though most of the eventual applications involve a feld of definition k.I believe this c.an be iustified as follows.In order to work over k from the outset,it would be necessary to spend a good deal of time perfecting the foundations.and then the only rationality statements proved along the way would be Of a minor sort rcf (34.2)) 綫性代數群 [Linear Algebraic Groups] 下載 mobi epub pdf txt 電子書

綫性代數群 [Linear Algebraic Groups] pdf epub mobi txt 電子書 下載
想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

這本書雖然作者沒有borel那本名氣大,但類容比那本書多。代數群理論的萌牙,可以追溯到19世紀末葉。當時L.毛瑞爾與(C.-)É.皮卡實際上已經研究瞭復數域上的綫性代數群;皮卡把這些群用到綫性微分方程的伽羅瓦理論中去。但是,在此後的半個世紀中,他們的這一工作並未引起人們的注意,而É.(-J.)嘉當與(C.H.)H.外爾在這期間對李群與李代數進行瞭深入的研究,所獲成果促進瞭綫性代數群理論的正式齣現。20世紀40年代,C.謝瓦萊與段學復用李代數的方法,討論瞭特徵為零的任意域上的綫性代數群,這是綫性代數群理論誕生的前奏。1955年前後,綫性代數群的一般理論終於由A.博雷爾與謝瓦萊等人提齣來瞭。而後經博雷爾、R.施坦伯格和J.蒂茨等人的進一步發展,形成瞭一個較完美的數學體係,並對基礎數學的許多領域諸如半單李群及其算術子群、典型群、有限單群、不變量理論等的發展起瞭重要的作用。設G是代數閉域K上的代數簇,如果G還具有群的結構,並且群的乘積運算G×G→G與求逆元運算 G→G都是代數簇的態射,那麼G稱為K上的代數群。如果G是仿射簇,那麼G稱為仿射代數群或綫性代數群;如果G是不可約的完備簇,那麼G稱為阿貝爾簇。雖然代數群的定義與拓撲群的定義十分相似,但是代數簇的積不是拓撲積而是紮裏斯基積,所以一般地說,代數群不是拓撲群。

評分

綫性代數群入門書,寫的不錯

評分

不錯 非常便宜質量也可以

評分

做代數群一定要讀,要比Borel和springer的好讀一些。

評分

質量很好,配送快,方便快捷

評分

綫性代數群入門書,寫的不錯

評分

做代數群一定要讀,要比Borel和springer的好讀一些。

評分

綫性代數群一本,據說是入門用的~

評分

這本書雖然作者沒有borel那本名氣大,但類容比那本書多。代數群理論的萌牙,可以追溯到19世紀末葉。當時L.毛瑞爾與(C.-)É.皮卡實際上已經研究瞭復數域上的綫性代數群;皮卡把這些群用到綫性微分方程的伽羅瓦理論中去。但是,在此後的半個世紀中,他們的這一工作並未引起人們的注意,而É.(-J.)嘉當與(C.H.)H.外爾在這期間對李群與李代數進行瞭深入的研究,所獲成果促進瞭綫性代數群理論的正式齣現。20世紀40年代,C.謝瓦萊與段學復用李代數的方法,討論瞭特徵為零的任意域上的綫性代數群,這是綫性代數群理論誕生的前奏。1955年前後,綫性代數群的一般理論終於由A.博雷爾與謝瓦萊等人提齣來瞭。而後經博雷爾、R.施坦伯格和J.蒂茨等人的進一步發展,形成瞭一個較完美的數學體係,並對基礎數學的許多領域諸如半單李群及其算術子群、典型群、有限單群、不變量理論等的發展起瞭重要的作用。設G是代數閉域K上的代數簇,如果G還具有群的結構,並且群的乘積運算G×G→G與求逆元運算 G→G都是代數簇的態射,那麼G稱為K上的代數群。如果G是仿射簇,那麼G稱為仿射代數群或綫性代數群;如果G是不可約的完備簇,那麼G稱為阿貝爾簇。雖然代數群的定義與拓撲群的定義十分相似,但是代數簇的積不是拓撲積而是紮裏斯基積,所以一般地說,代數群不是拓撲群。

類似圖書 點擊查看全場最低價

綫性代數群 [Linear Algebraic Groups] pdf epub mobi txt 電子書 下載


分享鏈接


去京東購買 去京東購買
去淘寶購買 去淘寶購買
去噹噹購買 去噹噹購買
去拼多多購買 去拼多多購買


綫性代數群 [Linear Algebraic Groups] bar code 下載
扫码下載





相關圖書




本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 windowsfront.com All Rights Reserved. 靜流書站 版權所有