多維實分析(第1捲) [Multidimensional Real Analysis I Differentiation] pdf epub mobi txt 電子書 下載 2025

圖書介紹


多維實分析(第1捲) [Multidimensional Real Analysis I Differentiation]

簡體網頁||繁體網頁
[荷] 杜斯特馬特 著



點擊這裡下載
    

想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2025-01-22


類似圖書 點擊查看全場最低價

齣版社: 世界圖書齣版公司
ISBN:9787510004520
版次:1
商品編碼:10762373
包裝:平裝
外文名稱:Multidimensional Real Analysis I Differentiation
開本:24開
齣版時間:2009-08-01
用紙:膠版紙
頁數:422
正文語種:英文

多維實分析(第1捲) [Multidimensional Real Analysis I Differentiation] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2025

相關圖書



多維實分析(第1捲) [Multidimensional Real Analysis I Differentiation] epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2025

多維實分析(第1捲) [Multidimensional Real Analysis I Differentiation] pdf epub mobi txt 電子書 下載



具體描述

內容簡介

This book, which is in two parts, provides an introduction to the theory of vector- valued functions on Euclidean space. We focus on four main objects of study and in addition consider the interactions between these. Volume I is devoted to differentiation. Differentiable functions on Rn come first, in Chapters 1 through 3. Next, differentiable manifolds embedded in R are discussed, in Chapters 4 and 5. In Volume 11 we take up integration. Chapter 6 deals with the theory of n-dimensional integration over R. Finally, in Chapters 7 and 8 lower-dimensional integration over submanifolds of Rn is developed; particular attention is paid to vector analysis and the theory of differential forms, which are treated independently from each other. Generally speaking, the emphasis is on geometric aspects of analysis rather than on matters belonging to functional analysis.

內頁插圖

目錄

Volume Ⅰ
Preface
Acknowledgments
Introduction
1 Continuity
1.1 Inner product and norm
1.2 Open and closed sets
1.3 Limits and continuous mappings
1.4 Composition of mappings
1.5 Homeomorphisms
1.6 Completeness
1.7 Contractions
1.8 Compactness and uniform continuity
1.9 Connectedness

2 Differentiation
2.1 Linear mappings
2.2 Differentiable mappings
2.3 Directional and partial derivatives
2.4 Chain rule
2.5 Mean Value Theorem
2.6 Gradient
2.7 Higher-order derivatives
2.8 Taylor's formula
2.9 Critical points
2.10Commuting limit operations

3 Inverse Function and Implicit Function Theorems
3.1 Diffeomorphisms
3.2 Inverse Function Theorems
3.3 Applications oflnverse Function Theorems
3.4 Implicitly defined mappings
3.5 Implicit Function Theorem
3.6 Applications of the Implicit Function Theorem
3.7 Implicit and Inverse Function Theorems on C

4 Manifolds
4.1 Introductory remarks
4.2 Manifolds
4.3 Immersion Theorem
4.4 Examples of immersions
4.5 Submersion Theorem
4.6 Examples of submersions
4.7 Equivalent definitions of manifold
4.8 Morse's Lemma

5 Tangent Spaces
5.1 Definition of tangent space
5.2 Tangent mapping
5.3 Examples of tangent spaces
5.4 Method of Lagrange multipliers
5.5 Applications of the method of multipliers
5.6 Closer investigation of critical points
5.7 Gaussian curvature of surface
5.8 Curvature and torsion of curve in R3
5.9 One-parameter groups and infinitesimal generators
5.10 Linear Lie groups and their Lie algebras
5.11 Transversality
Exercises
Review Exercises
Exercises for Chapter 1
Exercises for Chapter 2
Exercises for Chapter 3
Exercises for Chapter 4
Exercises for Chapter 5
Notation
Index
Volume Ⅱ
Preface
Acknowledgments
Introduction

6 Integration
6.1 Rectangles
6.2 Riemann integrability
6.3Jordan measurability
6.4 Successive integration
6.5 Examples of successive integration
6.6 Change of Variables Theorem: formulation and examples
6.7 Partitions of unity
6.8 Approximation of Riemann integrable functions
6.9 Proof of Change of Variables Theorem
6.10 Absolute Riemann integrability
6.11 Application of integration: Fourier transformation
6.12 Dominated convergence
6.13 Appendix: two other proofs of Change of Variables Theorem

7 Integration over Submanifolds
7.1 Densities and integration with respect to density
7.2 Absolute Riemann integrability with respect to density
7.3 Euclidean d-dimensional density
7.4 Examples of Euclidean densities
7.5 Open sets at one side of their boundary
7.6 Integration of a total derivative
7.7 Generalizations of the preceding theorem
7.8 Gauss' Divergence Theorem
7.9 Applications of Gauss' Divergence Theorem

8 Oriented Integration
8.1 Line integrals and properties of vector fields
8.2 Antidifferentiation
8.3 Green's and Cauchy's Integral Theorems
8.4 Stokes' Integral Theorem
8.5 Applications of Stokes' Integral Theorem
8.6 Apotheosis: differential forms and Stokes' Theorem .
8.7 Properties of differential forms
8.8 Applications of differential forms
8.9 Homotopy Lemma
8.10 Poincare's Lemma
8.11 Degree of mapping
Exercises
Exercises for Chapter 6
Exercises for Chapter 7
Exercises for Chapter 8
Notation
Index

前言/序言



多維實分析(第1捲) [Multidimensional Real Analysis I Differentiation] 下載 mobi epub pdf txt 電子書

多維實分析(第1捲) [Multidimensional Real Analysis I Differentiation] pdf epub mobi txt 電子書 下載
想要找書就要到 靜流書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

評分

評分

評分

評分

評分

評分

評分

評分

類似圖書 點擊查看全場最低價

多維實分析(第1捲) [Multidimensional Real Analysis I Differentiation] pdf epub mobi txt 電子書 下載


分享鏈接


去京東購買 去京東購買
去淘寶購買 去淘寶購買
去噹噹購買 去噹噹購買
去拼多多購買 去拼多多購買


多維實分析(第1捲) [Multidimensional Real Analysis I Differentiation] bar code 下載
扫码下載





相關圖書




本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2025 windowsfront.com All Rights Reserved. 靜流書站 版權所有