ad holder

数学分析教程(下册) pdf epub mobi txt 下载 2021

图书介绍


数学分析教程(下册)

简体网页||繁体网页
常庚哲,史济怀 编

    

发表于2021-09-28

类似图书 点击查看全场最低价

出版社: 高等教育出版社
ISBN:9787040119213
版次:1
商品编码:10300955
包装:平装
开本:16开
出版时间:2003-06-01
页数:402
正文语种:中文

数学分析教程(下册) epub 下载 mobi 下载 pdf 下载 txt 下载 2021

相关图书



数学分析教程(下册) epub 下载 mobi 下载 pdf 下载 txt 下载 2021

数学分析教程(下册) pdf epub mobi txt 下载



具体描述

内容简介

   《数学分析教程》(下册)内容包括:反常积分,Fourier分析,多变量函数的连续性,多变量函数的微分学,隐函数和隐映射定理,曲面的表示与逼近,多重积分,曲线积分,曲面积分,场的数学,含参变量积分等。《数学分析教程》是晋通高等院校“十五” 国家级规划教材,是在1998年江苏教育出版社出版的《数学分析教程》的基础上作了较大的改动而成的,原书在全国同类教材中有非常积极的影响。

目录

~第11章 反常积分
§11.1非负函数无穷积分的收敛判别法
§11.2无穷积分的Dirichlet和Abel收敛判别法
§11.3瑕积分的收敛判别法

第12章 Fourier分析
§12.1周期函数的Fourier级数
§12.2Fourier级数的收敛定理
§12.3.Fourier级数的Ces~~ro求和
§12.4平方平均逼近
§12.5Fourier积分和Fourier变换

第13章 多变量函数的连续性
§13.1n维Euclid空间
§13.2R中点列的极限
§13.3R“中的开集和闭集
§13.4列紧集和紧致集
§13.5集合的连通性
§13.6多变量函数的极限
§13.7多变量连续函数
§13.8连续映射

第14章 多变量函数的微分学
§14.1方向导数和偏导数
§14.2多变量函数的微分
§14.3映射的微分
§14.4复合求导
§14.5拟微分平均值定理
§14.6隐函数定理
§14.7隐映射定理
§14.8逆映射定理
§14.9高阶偏导数
§14.10Taylol公式
§14.11极值
§14.12条件极值

第15章 曲面的表示与逼近
§15.1曲面的显式方程和隐式方程
§15.2曲面的参数方程
§15.3凸曲面.
§15.4Bernstein—B6zier曲面

第16章 多重积分
§16.1矩形区域上的积分
§16.2可积函数类
§16.3矩形区域上二重积分的计算
§16.4有界集合上的二重积分
§16.5有界集合上积分的计算
§16.6二重积分换元
§16.7三重积分
§16.8n重积分
§16.9重积分物理应用举例

第17章 曲线积分
§17.1第一型曲线积分
§17.2第二型曲线积分
§17.3Green公式
§17.4等周问题

第18章 曲面积分
§18.1曲面的面积
§18.2第一型曲面积分
§18.3第二型曲面积分
§18.4Gauss公式和Stokes公式
§18.5微分形式和外微分运算

第19章 场的数学
§19.1数量场的梯度
§19.2向量场的散度
§19.3向量场的旋度
§19.4有势场和势函数
§19.5正交曲线坐标系中梯度、散度和旋度的表达式

第20章 含参变量积分
§20.1含参变量的常义积分
§20.2含参变量反常积分的一致收敛
§20.3含参变量反常积分的性质
§20.411函数和B函数
§20.5n维球的体积和面积
附录问题的解答与提示~
数学分析教程(下册) 下载 mobi epub pdf txt

数学分析教程(下册) pdf epub mobi txt 下载

用户评价

评分

还没开始看,相信一定和上册一样好

评分

送货快

评分

质量不错,发货速度挺快

评分

没的说,科大经典的教材

评分

(98U%好评)

评分

2.4

评分

用券买的,价格实惠,书的质量不错,好评!

评分

2.4

评分

2.11

类似图书 点击查看全场最低价

数学分析教程(下册) pdf epub mobi txt 下载

去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


数学分析教程(下册) bar code 下载
扫码下载





相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2021 windowsfront.com All Rights Reserved. 静流书站 版权所有