应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] pdf epub mobi txt 电子书 下载 2024

图书介绍


应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications]

简体网页||繁体网页
[德] 泽德勒 著



点击这里下载
    


想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-22

类似图书 点击查看全场最低价

出版社: 世界图书出版公司
ISBN:9787510005459
版次:1
商品编码:10104517
包装:平装
外文名称:Applied Functional AnalysisMa:In Principles and Their Applications
开本:16开
出版时间:2009-10-01
用纸:胶版纸
页数:404
正文语

应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

相关图书



应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] pdf epub mobi txt 电子书 下载



具体描述

内容简介

  More precisely, by (i), I mean a systematic presentation of the materialgoverned by the desire for mathematical perfection and completeness ofthe results. In contrast to (i), approach (ii) starts out from the question"What are the most important applications?" and then tries to answer thisquestion as quickly as possible. Here, one walks directly on the main roadand does not wander into all the nice and interesting side roads.
  The present book is based on the second approach. It is addressed toundergraduate and beginning graduate students of mathematics, physics,and engineering who want to learn how functional analysis elegantly solvesma~hematical problems that are related to our real world azld that haveplayed an important role in the history of mathematics. The reader shouldsense that the theory is being developed, not simply for its own sake, butfor the effective solution of concrete problems.

内页插图

目录

Preface
Contents of AMS Volume 108
1 The Hahn-Banach Theorem Optimization Problems
1.1 The Hahn-Banach Theorem
1.2 Applications to the Separation of Convex Sets
1.3 The Dual Space C[a, b]*
1.4 Applications to the Moment Problem
1.5 Minimum Norm Problems and Duality Theory
1.6 Applications to Cebysev Approximation
1.7 Applications to the Optimal Control of Rockets
2 Variational Principles and Weak Convergence
2.1 The nth Variation
2.2 Necessary and Sufficient Conditions for Local Extrema and the Classical Calculus of Variations
2.3 The Lack of Compactness in Infinite-Dimensional Banach Spaces
2.4 Weak Convergence
2.5 The Generalized Weierstrass Existence Theorem
2.6 Applications to the Calculus of Variations
2.7 Applications to Nonlinear Eigenvalue Problems
2.8 Reflexive Banach Spaces
2.9 Applications to Convex Minimum Problems and Variational Inequalities
2.10 Applications to Obstacle Problems in Elasticity
2.11 Saddle Points
2.12 Applications to Dui~lity Theory
2.13 The von Neumann Minimax Theorem on the Existence of Saddle Points
2.14 Applications to Game Theory
2.15 The Ekeland Principle about Quasi-Minimal Points
2.16 Applications to a General Minimum Principle via the Palais-Smale Condition
2.17 Applications to the Mountain Pass Theorem
2.18 The Galerkin Menhod and Nonlinear Monotone Operators
2.19 Symmetries and Conservation Laws (The Noether Theorem
2.20 The Basic Ideas of Gauge Field Theory
2.21 Representations of Lie Algebras
2.22 Applications to Elementary Particles
3 Principles of Linear Functional Analysis
3.1 The Baire Theorem
3.2 Application to the Existence of Nondifferentiable Continuous Functions
3.3 The Uniform Boundedness Theorem
3.4 Applications to Cubature Formulas
3.5 The Open Mapping Theorem
3.6 Product Spaces
3.7 The Closed Graph Theorem
3.8 Applications to Factor Spaces
3.9 Applications to Direct Sums and Projections
3.10 Dual Operators
3.11 The Exactness of the Duality Functor
3.12 Applications to the Closed Range Theorem and to Fredholm Alternatives
4 The Implicit Function Theorem
4.1 m-Linear Bounded Operators
4.2 The Differential of Operators and the Fr~chet Derivative
4.3 Applications to Analytic Operators
4.4 Integration
4.5 Applications to the Taylor Theorem
4.6 Iterated Derivatives
4.7 The Chain Rule
4.8 The Implicit Function Theorem
4.9 Applications to Differential Equations
4.10 Diffeomorphisms and the Local Inverse Mapping Theorem
4.11 Equivalent Maps and the Linearization Principle
4.12 The Local Normal Form for Nonlinear Double Splitting Maps
4.13 The Surjective Implicit Function Theorem
4.14 Applications to the Lagrange Multiplier Rule
5 Fredholm Operators
5.1 Duality for Linear Compact Operators
5.2 The Riesz-Schauder Theory on Hilbert Spaces
5.3 Applications to Integral Equations
5.4 Linear Fredholm Operators
5.5 The Riesz-Schauder Theory on Banach Spaces
5.6 Applications to the Spectrum of Linear Compact Operators
5.7 The Parametrix
5.8 Applications to the Perturbation of Fredholm Operators
5.9 Applications to the Product Index Theorem
5.10 Fredholm Alternatives via Dual Pairs
5.11 Applications to Integral Equations and Boundary-Value Problems
5.12 Bifurcation Theory
5.13 Applications to Nonlinear Integral Equations
5.14 Applications to Nonlinear Boundary-Value Problems
5.15 Nonlinear Fredholm Operators
5.16 Interpolation Inequalities
5.17 Applications to the Navier-Stokes Equations References
List of Symbols
List of Theorems
List of Most Important Definitions
Subject Index

前言/序言

  More precisely, by (i), I mean a systematic presentation of the materialgoverned by the desire for mathematical perfection and completeness ofthe results. In contrast to (i), approach (ii) starts out from the question"What are the most important applications?" and then tries to answer thisquestion as quickly as possible. Here, one walks directly on the main roadand does not wander into all the nice and interesting side roads.
  The present book is based on the second approach. It is addressed toundergraduate and beginning graduate students of mathematics, physics,and engineering who want to learn how functional analysis elegantly solvesma~hematical problems that are related to our real world azld that haveplayed an important role in the history of mathematics. The reader shouldsense that the theory is being developed, not simply for its own sake, butfor the effective solution of concrete problems.

应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] 电子书 下载 mobi epub pdf txt

应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] pdf epub mobi txt 电子书 下载
想要找书就要到 静流书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

经典的书,讲解清晰。

评分

质量又好送货又快,一直信赖京东

评分

希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。

评分

一直在京东买书,今天下单明天就到,直接送货上门,特别方便,价格也比实体店要优惠很多,而且书都是正版的,质量很不错,给京东点赞。

评分

专业人士使用。。。。。。。。。。

评分

这是最常见,应用最广的一类拓扑线性空间。比如有限闭区间上的连续函数空间,有限闭区间上的k次可微函数空间。或者对于每个实数p,如果p ≥ 1,一个巴拿赫空间的例子是“所有绝对值的p次方的积分收敛的勒贝格可测函数”所构成的空间。(参看Lp空间)

评分

微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。

评分

书是好书,印刷质量一般

评分

内容和印刷都很好,值得购买

类似图书 点击查看全场最低价

应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] pdf epub mobi txt 电子书 下载


分享链接


去京东购买 去京东购买
去淘宝购买 去淘宝购买
去当当购买 去当当购买
去拼多多购买 去拼多多购买


应用泛函分析(第2卷)(英文版) [Applied Functional AnalysisMa:In Principles and Their Applications] bar code 下载
扫码下载










相关图书




本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 windowsfront.com All Rights Reserved. 静流书站 版权所有