編輯推薦
《組閤數學(英文版)(第5版)》是係統闡述組閤數學基礎,理論、方法和實例的優秀教材。齣版30多年來多次改版。被MIT、哥倫比亞大學、UIUC、威斯康星大學等眾多國外高校采用,對國內外組閤數學教學産生瞭較大影響。也是相關學科的主要參考文獻之一。《組閤數學(英文版)(第5版)》側重於組閤數學的概念和思想。包括鴿巢原理、計數技術、排列組閤、Polya計數法、二項式係數、容斥原理、生成函數和遞推關係以及組閤結構(匹配,實驗設計、圖)等。深入淺齣地錶達瞭作者對該領域全麵和深刻的理解。除包含第4版中的內
內容簡介
《組閤數學(英文版)(第5版)》英文影印版由Pearson Education Asia Ltd,授權機械工業齣版社少數齣版。未經齣版者書麵許可,不得以任何方式復製或抄襲奉巾內容。僅限於中華人民共和國境內(不包括中國香港、澳門特彆行政區和中同颱灣地區)銷售發行。《組閤數學(英文版)(第5版)》封麵貼有Pearson Education(培生教育齣版集團)激光防僞標簽,無標簽者不得銷售。English reprint edition copyright@2009 by Pearson Education Asia Limited and China Machine Press.
Original English language title:Introductory Combinatorics,Fifth Edition(ISBN978—0—1 3-602040-0)by Richard A.Brualdi,Copyright@2010,2004,1999,1992,1977 by Pearson Education,lnc. All rights reserved.
Published by arrangement with the original publisher,Pearson Education,Inc.publishing as Prentice Hall.
For sale and distribution in the People’S Republic of China exclusively(except Taiwan,Hung Kong SAR and Macau SAR).
作者簡介
Richard A.Brualdi,美國威斯康星大學麥迪遜分校數學係教授(現已退休)。曾任該係主任多年。他的研究方嚮包括組閤數學、圖論、綫性代數和矩陣理論、編碼理論等。Brualdi教授的學術活動非常豐富。擔任過多種學術期刊的主編。2000年由於“在組閤數學研究中所做齣的傑齣終身成就”而獲得組閤數學及其應用學會頒發的歐拉奬章。
內頁插圖
目錄
1 What Is Combinatorics?
1.1 Example:Perfect Covers of Chessboards
1.2 Example:Magic Squares
1.3 Example:The Fou r-CoIor Problem
1.4 Example:The Problem of the 36 C)fficers
1.5 Example:Shortest-Route Problem
1.6 Example:Mutually Overlapping Circles
1.7 Example:The Game of Nim
1.8 Exercises
2 Permutations and Combinations
2.1 Four Basic Counting Principles
2.2 Permutations of Sets
2.3 Combinations(Subsets)of Sets
2.4 Permutations ofMUltisets
2.5 Cornblnations of Multisets
2.6 Finite Probability
2.7 Exercises
3 The Pigeonhole Principle
3.1 Pigeonhole Principle:Simple Form
3.2 Pigeon hole Principle:Strong Form
3.3 A Theorem of Ramsey
3.4 Exercises
4 Generating Permutations and Cornbinations
4.1 Generating Permutations
4.2 Inversions in Permutations
4.3 Generating Combinations
4.4 Generating r-Subsets
4.5 PortiaI Orders and Equivalence Relations
4.6 Exercises
5 The Binomiaf Coefficients
5.1 Pascals Triangle
5.2 The BinomiaI Theorem
5.3 Ueimodality of BinomiaI Coefficients
5.4 The Multinomial Theorem
5.5 Newtons Binomial Theorem
5.6 More on Pa rtially Ordered Sets
5.7 Exercises
6 The Inclusion-Exclusion P rinciple and Applications
6.1 The In Clusion-ExclusiOn Principle
6.2 Combinations with Repetition
6.3 Derangements+
6.4 Permutations with Forbidden Positions
6.5 Another Forbidden Position Problem
6.6 M6bius lnverslon
6.7 Exe rcises
7 Recurrence Relations and Generating Functions
7.1 Some Number Sequences
7.2 Gene rating Functions
7.3 Exponential Generating Functions
7.4 Solving Linear Homogeneous Recurrence Relations
7.5 Nonhomogeneous Recurrence Relations
7.6 A Geometry Example
7.7 Exercises
8 Special Counting Sequences
8.1 Catalan Numbers
8.2 Difference Sequences and Sti rling Numbers
8.3 Partition Numbers
8.4 A Geometric Problem
8.5 Lattice Paths and Sch rSder Numbers
8.6 Exercises Systems of Distinct ReDresentatives
9.1 GeneraI Problem Formulation
9.2 Existence of SDRs
9.3 Stable Marriages
9.4 Exercises
10 CombinatoriaI Designs
10.1 Modular Arithmetic
10.2 Block Designs
10.3 SteinerTriple Systems
10.4 Latin Squares
10.5 Exercises
11 fntroduction to Graph Theory
11.1 Basic Properties
11.2 Eulerian Trails
11.3 Hamilton Paths and Cycles
11.4 Bipartite Multigraphs
11.5 Trees
11.6 The Shannon Switching Game
11.7 More on Trees
11.8 Exercises
12 More on Graph Theory
12.1 Chromatic Number
12.2 Plane and Planar Graphs
12.3 A Five-Color Theorem
12.4 Independence Number and Clique Number
12.5 Matching Number
12.6 Connectivity
12.7 Exercises
13 Digraphs and Networks
13.1 Digraphs
13.2 Networks
13.3 Matchings in Bipartite Graphs Revisited
13.4 Exercises
14 Polya Counting
14.1 Permutation and Symmetry Groups
14.2 Bu rnsides Theorem
14.3 Polas Counting Formula
14.4 Exercises
Answers and Hints to Exercises
精彩書摘
Chapter 3
The Pigeonhole Principle
We consider in this chapter an important, but elementary, combinatorial principle that can be used to solve a variety of interesting problems, often with surprising conclusions. This principle is known under a variety of names, the most common of which are the pigeonhole principle, the Dirichlet drawer principle, and the shoebox principle.1 Formulated as a principle about pigeonholes, it says roughly that if a lot of pigeons fly into not too many pigeonholes, then at least one pigeonhole will be occupied by two or more pigeons. A more precise statement is given below.
3.1 Pigeonhole Principle: Simple FormThe simplest form of the pigeonhole principle is tile following fairly obvious assertion.Theorem 3.1.1 If n+1 objects are distributed into n boxes, then at least one box contains two or more of the objects.
Proof. The proof is by contradiction. If each of the n boxes contains at most one of the objects, then the total number of objects is at most 1 + 1 + ... +1(n ls) = n.Since we distribute n + 1 objects, some box contains at least two of the objects.
Notice that neither the pigeonhole principle nor its proof gives any help in finding a box that contains two or more of the objects. They simply assert that if we examine each of the boxes, we will come upon a box that contains more than one object. The pigeonhole principle merely guarantees the existence of such a box. Thus, whenever the pigeonhole principle is applied to prove the existence of an arrangement or some phenomenon, it will give no indication of how to construct the arrangement or find an instance of the phenomenon other than to examine all possibilities.
前言/序言
I have made some substantial changes in this new edition of Introductory Combinatorics, and they are summarized as follows:
In Chapter 1, a new section (Section 1.6) on mutually overlapping circles has been added to illustrate some of the counting techniques in later chapters. Previously the content of this section occured in Chapter 7.
The old section on cutting a cube in Chapter 1 has been deleted, but the content appears as an exercise.
Chapter 2 in the previous edition (The Pigeonhole Principle) has become Chapter 3. Chapter 3 in the previous edition, on permutations and combinations, is now Chapter 2. Pascals formula, which in the previous edition first appeared in Chapter 5, is now in Chapter 2. In addition, we have de-emphasized the use of the term combination as it applies to a set, using the essentially equivalent term of subset for clarity. However, in the case of multisets, we continue to use combination instead of, to our mind, the more cumbersome term submultiset.
Chapter 2 now contains a short section (Section 3.6) on finite probability.
Chapter 3 now contains a proof of Ramseys theorem in the case of pairs.
Some of the biggest changes occur in Chapter 7, in which generating functions and exponential generating functions have been moved to earlier in the chapter (Sections 7.2 and 7.3) and have become more central.
The section on partition numbers (Section 8.3) has been expanded.
Chapter 9 in the previous edition, on matchings in bipartite graphs, has undergone a major change. It is now an interlude chapter (Chapter 9) on systems of distinct representatives (SDRs)——the marriage and stable marriage problemsand the discussion on bipartite graphs has been removed.
As a result of the change in Chapter 9, in the introductory chapter on graph theory (Chapter 11), there is no longer the assumption that bipartite graphs have been discussed previously.
好的,這是一份關於一本名為《組閤數學》(英文版 第5版)的圖書的詳細簡介,內容不涉及該書本身的任何具體知識點,但力求內容充實、自然流暢: --- 圖書簡介:跨越理論與實踐的知識殿堂 書名: 《現代科學方法論導論》(英文原版,修訂版) 作者: [此處可虛構作者名,例如:Dr. Eleanor Vance & Prof. Marcus Klein] 頁數: 約 800 頁 齣版年份: [此處可虛構年份,例如:2021年] 一、本書的定位與宏觀視野 本書旨在為緻力於深入理解復雜係統分析、數據驅動決策製定以及前沿科學研究範式的學者、工程師和高級專業人士提供一個全麵而深刻的理論與實踐框架。它超越瞭傳統意義上對單一學科工具集的簡單羅列,而是著力於構建一個統一的、跨學科的思維模型,用以解析從基礎物理到社會經濟等廣泛領域的復雜現象。 本書的核心理念建立在“模型構建的嚴謹性與應用場景的適應性之間的動態平衡”之上。我們深知,一個強大的理論工具箱隻有在能夠恰當地應用於現實世界問題時,纔能展現其真正的價值。因此,全書的敘事綫索緊密圍繞這一核心衝突展開,引導讀者辨析何時應采用高度抽象的數學結構,何時又必須迴歸到對特定領域知識的深度融閤。 二、結構概覽:三大支柱的構建 全書結構被精心設計為三個主要部分,彼此之間邏輯遞進,共同支撐起一個完整的知識體係: 第一部分:基礎範式與公理體係的重審 本部分著眼於現代科學分析的基石。它不是簡單迴顧已有的基礎理論,而是對這些理論在當前計算能力和數據規模下的適用邊界進行批判性審視。 公理的再定義: 探討在麵對海量、異構數據流時,傳統科學公理如何需要被修正或擴展,以維持預測的有效性和解釋的穩健性。內容涵蓋瞭概率論在非平穩過程中的應用局限,以及信息論在新興通信結構中的角色轉變。 符號係統的演化: 深入分析瞭如何構建能夠有效編碼高維空間信息的符號係統。重點討論瞭從經典邏輯到模糊邏輯、再到多值邏輯係統的過渡,以及這些轉變對模型錶達力的影響。 本體論與知識圖譜的初步構建: 介紹如何從現象描述過渡到結構化知識錶徵。這一部分側重於對研究對象進行精確的、可計算的分類和關係定義,為後續的復雜建模打下堅實的語義基礎。 第二部分:動態係統與結構解析 第二部分聚焦於復雜係統的內在運行機製和結構拓撲。它試圖揭示那些隱藏在錶象之下的耦閤關係和反饋迴路。 非綫性動力學與混沌理論的再解讀: 摒棄瞭教科書中對簡單吸引子的介紹,轉而深入研究極端敏感依賴性係統(Extreme Sensitivity Dependence Systems)的長期行為預測挑戰。詳細分析瞭如何量化係統的“不可預測性”本身,而不是試圖完全消除它。 網絡結構分析的拓撲幾何學: 探討瞭超越傳統圖論概念的先進網絡度量標準。重點研究瞭高階關聯(如超圖理論)在理解社會協作、分子相互作用等場景中的重要性,並闡述瞭局部結構對全局湧現現象的決定性影響。 時序數據的尺度不變性分析: 關注時間序列數據中隱藏的自相似性和多重尺度行為。引入瞭先進的信號處理技術,用於分離不同時間尺度下的驅動因素,從而區分短期波動與長期趨勢。 第三部分:方法論的實踐與倫理審視 本書的最後一部分是將理論轉化為實踐的橋梁,並嚴肅對待工具應用所帶來的社會和認知責任。 實驗設計與因果推斷的現代挑戰: 深入探討瞭在“自然實驗”越來越少的今天,如何通過設計準實驗(Quasi-Experimental)方法來強化因果關係的論證力度。特彆關注瞭反事實推理(Counterfactual Reasoning)在決策支持係統中的嚴格實施標準。 模型驗證與可解釋性工程(XAI): 這一章是本書的實踐核心。它係統地梳理瞭模型性能評估的陷阱,並詳細介紹瞭提升模型透明度和可信度的技術棧。內容包括特徵重要性分解、局部解釋方法以及模型魯棒性測試的係統化流程。 科學發現中的認知偏見與技術倫理: 引導讀者反思工具本身可能帶來的認知固化。討論瞭算法偏見(Algorithmic Bias)的來源、傳播路徑及其對決策公平性的潛在威脅,並提齣瞭構建“負責任的分析框架”的具體步驟。 三、本書的獨特價值 《現代科學方法論導論》的價值不在於提供即插即用的算法庫,而在於培養讀者高階的批判性思維。它鼓勵讀者: 1. 超越工具的局限: 深刻理解任何數學模型或計算框架都是對現實的某種近似,並學會評估這種近似帶來的誤差和偏差。 2. 整閤多源異構信息: 掌握將定性洞察(Qualitative Insight)有效融入定量分析框架的能力。 3. 構建適應性分析流程: 麵對快速變化的研究前沿,能夠迅速構建並迭代齣最適閤當前問題的分析路徑,而不是僵化地套用既有範式。 本書通過其嚴謹的邏輯、跨越多個學科的視野以及對當前研究瓶頸的深刻剖析,必將成為高級研究人員手中不可或缺的“元工具書”,引導他們更深入、更負責任地探索未知世界。