发表于2025-04-04
Information Theory, Inference and Learning Algorithms pdf epub mobi txt 电子书 下载
Sir David John Cameron MacKay FRS FInstP FICE (22 April 1967 – 14 April 2016) was a British physicist, mathematician, and academic. He was the Regius Professor of Engineering in the Department of Engineering at the University of Cambridge and from 2009 to 2014 was Chief Scientific Adviser to the UK Department of Energy and Climate Change (DECC). MacKay authored the book Sustainable Energy – Without the Hot Air.
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
##好书?圈粉 1.刚从图书馆借到这本书,顺着书中的支持网站,发现作者把公开课视频也免费放到网上了,还可以直接下到英文原版电子版,这是什么精神~ ”A series of sixteen lectures covering the core of the book "Information Theory, Inference, and Learning Algorithms (Cambridge Un...
评分 评分 评分信息论和机器学习是一个硬币的两面。传统的信息论两条理论上的香农,工程应用是通信。具体的:贝叶斯数据模型,蒙特卡洛,变分法,聚类算法,神经网络。大脑是压缩和通信系统
评分##: G201/M153
评分##学习信息论的时候,老师推荐的,然后就买来了。实例很多,习题也很经典,花费了一个学期看了一遍,感觉对信息论的理解完全高了好多个层次。
评分 评分 评分##教科书的榜样
Information Theory, Inference and Learning Algorithms pdf epub mobi txt 电子书 下载