發表於2024-12-26
正版 基於深度學習的自然語言處理 基於深度學習的自然語言處理 自然語言處理教程書機器學習 pdf epub mobi txt 電子書 下載
基於深度學習的自然語言處理 | ||
定價 | 69.00 | |
齣版社 | 機械工業齣版社 | |
版次 | 1 | |
齣版時間 | 2018年05月 | |
開本 | 16開 | |
作者 | (以)約阿夫·戈爾德貝格(Yoav Goldberg) | |
裝幀 | 平裝-膠訂 | |
頁數 | ||
字數 | ||
ISBN編碼 | 9787111593737 | |
重量 | 493 |
..........
譯者序
前言
緻謝
章引言
1��1自然語言處理的挑戰
1��2神經網絡和深度學習
1��3自然語言處理中的深度學習
1��4本書的覆蓋麵和組織結構
1��5本書未覆蓋的內容
1��6術語
1��7數學符號
注釋
部分有監督分類與前饋神經網絡
第2章學習基礎與綫性模型
2��1有監督學習和參數化函數
2��2訓練集、測試集和驗證集
2��3綫性模型
2��3��1二分類
2��3��2對數綫性二分類
2��3��3多分類
2��4錶示
2��5獨熱和稠密嚮量錶示
2��6對數綫性多分類
2��7訓練和優化
2��7��1損失函數
2��7��2正則化
2��8基於梯度的優化
2��8��1梯度下降
2��8��2實例
2��8��3其他訓練方法
第3章從綫性模型到多層感知器
3��1綫性模型的局限性:異或問題
3��2非綫性輸入轉換
3��3核方法
3��4可訓練的映射函數
第4章前饋神經網絡
4��1一個關於大腦的比喻
4��2數學錶示
4��3錶達能力
4��4常見的非綫性函數
4��5損失函數
4��6正則化與丟棄法
4��7相似和距離層
4��8嵌入層
第5章神經網絡訓練
5��1計算圖的抽象概念
5��1��1前嚮計算
5��1��2反嚮計算(導數、反嚮傳播)
5��1��3軟件
5��1��4實現流程
5��1��5網絡構成
5��2實踐經驗
5��2��1優化算法的選擇
5��2��2初始化
5��2��3重啓與集成
5��2��4梯度消失與梯度爆炸
5��2��5飽和神經元與死神經元
5��2��6打亂
5��2��7學習率
5��2��8minibatch
第2部分處理自然語言數據
第6章文本特徵構造
6��1NLP分類問題中的拓撲結構
6��2NLP問題中的特徵
6��2��1直接可觀測特徵
6��2��2可推斷的語言學特徵
6��2��3核心特徵與組閤特徵
6��2��4n元組特徵
6��2��5分布特徵
第7章NLP特徵的案例分析
7��1文本分類:語言識彆
7��2文本分類:主題分類
7��3文本分類:作者歸屬
7��4上下文中的單詞:詞性標注
7��5上下文中的單詞:命名實體識彆
7��6上下文中單詞的語言特徵:介詞詞義消歧
7��7上下文中單詞的關係:弧分解分析
第8章從文本特徵到輸入
8��1編碼分類特徵
8��1��1獨熱編碼
8��1��2稠密編碼(特徵嵌入)
8��1��3稠密嚮量與獨熱錶示
8��2組閤稠密嚮量
8��2��1基於窗口的特徵
8��2��2可變特徵數目:連續詞袋
8��3獨熱和稠密嚮量間的關係
8��4雜項
8��4��1距離與位置特徵
8��4��2補齊、未登錄詞和詞丟棄
8��4��3特徵組閤
8��4��4嚮量共享
8��4��5維度
8��4��6嵌入的詞錶
8��4��7網絡的輸齣
8��5例子:詞性標注
8��6例子:弧分解分析
第9章語言模型
9��1語言模型任務
9��2語言模型評估:睏惑度
9��3語言模型的傳統方法
9��3��1延伸閱讀
9��3��2傳統語言模型的限製
9��4神經語言模型
9��5使用語言模型進行生成
9��6副産品:詞的錶示
0章預訓練的詞錶示
10��1初始化
10��2有監督的特定任務的預訓練
10��3無監督的預訓練
10��4詞嵌入算法
10��4��1分布式假設和詞錶示
10��4��2從神經語言模型到分布式錶示
10��4��3詞語聯係
10��4��4其他算法
10��5上下文的選擇
10��5��1窗口方法
10��5��2句子、段落或文檔
10��5��3句法窗口
10��5��4多語種
10��5��5基於字符級彆和子詞的錶示
10��6處理多字單元和字變形
10��7分布式方法的限製
1章使用詞嵌入
11��1詞嚮量的獲取
11��2詞的相似度
11��3詞聚類
11��4尋找相似詞
11��5同中選異
11��6短文檔相似度
11��7詞的類比
11��8改裝和映射
11��9實用性和陷阱
2章案例分析:一種用於句子意義推理的前饋結構
12��1自然語言推理與 SNLI數據集
12��2文本相似網絡
第三部分特殊的結構
3章n元語法探測器:捲積神經網絡
13��1基礎捲積池化
13��1��1文本上的一維捲積
13��1��2嚮量池化
13��1��3變體
13��2其他選擇:特徵哈希
13��3層次化捲積
4章循環神經網絡:序列和棧建模
14��1RNN抽象描述
14��2RNN的訓練
14��3RNN常見使用模式
14��3��1接收器
14��3��2編碼器
14��3��3傳感器
14��4雙嚮RNN
14��5堆疊RNN
14��6用於錶示棧的RNN
14��7文獻閱讀的注意事項
5章實際的循環神經網絡結構
15��1作為RNN的CBOW
15��2簡單RNN
15��3門結構
15��3��1長短期記憶網絡
15��3��2門限循環單元
15��4其他變體
15��5應用到RNN的丟棄機製
6章通過循環網絡建模
16��1接收器
16��1��1情感分類器
16��1��2主謂一緻語法檢查
16��2作為特徵提取器的RNN
16��2��1詞性標注
16��2��2RNN�睳文本分類
16��2��3弧分解依存句法分析
7章條件生成
17��1RNN生成器
17��2條件生成(編碼器解碼器)
17��2��1序列到序列模型
17��2��2應用
17��2��3其他條件上下文
17��3無監督的句子相似性
17��4結閤注意力機製的條件生成
17��4��1計算復雜性
17��4��2可解釋性
17��5自然語言處理中基於注意力機製的模型
17��5��1機器翻譯
17��5��2形態屈摺
17��5��3句法分析
第四部分其他主題
8章用遞歸神經網絡對樹建模
18��1形式化定義
18��2擴展和變體
18��3遞歸神經網絡的訓練
18��4一種簡單的替代——綫性化樹
18��5前景
9章結構化輸齣預測
19��1基於搜索的結構化預測
19��1��1基於綫性模型的結構化預測
19��1��2非綫性結構化預測
19��1��3概率目標函數(CRF)
19��1��4近似搜索
19��1��5重排序
19��1��6參考閱讀
19��2貪心結構化預測
19��3條件生成與結構化輸齣預測
19��4實例
19��4��1基於搜索的結構化預測:一階依存句法分析
19��4��2基於Neural�睠RF的命名實體識彆
19��4��3基於柱搜索的NER�睠RF近似
第20章級聯、多任務與半監督學習
20��1模型級聯
20��2多任務學習
20��2��1多任務設置下的訓練
20��2��2選擇性共享
20��2��3作為多任務學習的詞嵌入預訓練
20��2��4條件生成中的多任務學習
20��2��5作為正則的多任務學習
20��2��6注意事項
20��3半監督學習
20��4實例
20��4��1眼動預測與句子壓縮
20��4��2弧標注與句法分析
20��4��3介詞詞義消歧與介詞翻譯預測
20��4��4條件生成:多語言機器翻譯、句法分析以及圖像描述生成
20��5前景
第21章結論
21��1我們學到瞭什麼
21��2未來的挑戰
參考文獻
正版 基於深度學習的自然語言處理 基於深度學習的自然語言處理 自然語言處理教程書機器學習 pdf epub mobi txt 電子書 下載